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Abstract

For the Davydov Hamiltonian several special cases are known which can be solved analytically. Starting from
these cases we show that the initial state for a simulation using Davydov’s |D

1
> approximation has to be con-

structed from a given set of initial lattice displacements and momenta in form of a coherent state with its
amplitudes independent of the lattices site, corresponding to Davydov’s |D

2
> approximation. In the |D

1
> ansatz

the coherent state amplitudes are site dependent. The site dependences evolve from this initial state exclusively
via the equations of motion. Starting the |D

1
> simulation from an ansatz with site dependent coherent state

amplitudes leads to an evolution which is different from the analytical solutions for the special cases. Further we
show that simple construction of such initial states from the expressions for displacements and momenta as
functions of the amplitudes leads to results which are inconsistent with the expressions for the lattice energy.
The site-dependence of coherent state amplitudes can only evolve through the exciton-phonon interactions and
cannot be introduced already in the initial state. Thus also in applications of the |D

1
> ansatz to polyacetylene

always |D
2
> type initial states have to be used in contrast to our previous suggestion [W. Förner, J. Phys.:

Condens. Matter 1994, 6, 9089-9151, on p. 9105]. Further we expand the known exact solutions in Taylor
serieses in time and compare expectation values in different orders with the exact results. We find that for an
approximation up to third order in time (for the wave function) norm and total energy, as well as displacements
and momenta are reasonably correct for a time up to  0.12-0.14 ps, depending somewhat on the coupling strengh
for the transportless case. For the oscillator system in the decoupled case the norm is correct up to 0.6-0.8 ps,
while the expectation values of the number operators for different sites are reasonably correct up to roughly 0.6
ps, when calculated from the third order wave function. The most important result for the purpose to use such
expansions for controlling the validity of ansatz states is, however, that the accuracy of S(t) and H(t) (constant in
time, exact values known in all cases) is obviously a general indicator for the time region in which a given
expansion yields reliable values also for the other, physically more interesting expectation values.
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Introduction

The most recent and best review of the state of art in Davydov
soliton theory was given by Scott [1], the leading expert in
the field. The problem which Davydov [2-5] attempted to
solve with his mechanism was the storage and transport of
energy through protein chains. The energy which is to be
transported or stored in biological systems is released by the
hydrolysis of adenosinetriphosphate (ATP) molecules which
amounts to about 0.4 eV (see [2-5] and [1] for further details
and references). In Davydov’s opinion the best candidate for
storing this energy in proteins is the amide-I vibration, which
is essentially of C=O stretch type, because one quantum of
this vibration has an energy of 0.205 eV, roughly half of the
energy released by ATP hydrolysis. From this starting point
Davydov developed his physical model for the energy trans-
port. In α−helical proteins the C=O groups of a turn in the
helix form hydrogen bonds to the N-H groups in the follow-
ing turn. As indicated in the following sketch (see section II)
these hydrogen bonds form chains parallel to the helix axis
and perpendicular to the covalent backbone. There are al-
ways three parallel chains of this kind in an α−helix. Within
such a chain the C=O oscillators are coupled via their transi-
tion dipole moment with each other, where next neighbor
coupling is by far the most important term. This type of cou-
pling is a linear one and makes the system dispersive, i.e. an
amide-I vibrational quantum at a site would not remain lo-
calized, but would be distributed over the complete chain
within a few picoseconds (ps).

As next step Davydov considered the fact that the chain
of coupled hydrogen bonds forms a phonon system with the
peptide units vibrating against each other in the potential
due to the hydrogen bonds. These hydrogen bonds are ap-
proximated by a harmonic potential. Since the excitation
energy of the amide-I oscillators is naturally dependent on
the length of the hydrogen bond in which the C=O group
takes part, the system of amide-I oscillators is coupled to the
acoustic phonon system of the hydrogen bonded chain (the
so-called lattice). Considering a linear dependence of the
amide-I excitation energy on the length of the hydrogen bond,
the coupling constant can be estimated experimentally. At-
tempts for the theoretical determination of this constant failed
(leading mostly even to values with the wrong sign) due to
the use of too small atomic basis sets and the lack of elec-
tronic correlation in the ab inito Hartree-Fock calculations
performed so far (see [1] for a discussion and references).
However, the experimental estimates place its value between
35 and 62 pN.

From these considerations Davydov constructed his model
Hamiltonian which contains just that details of the protein
α−helix which are the most important ones (constructive and
destructive) involved in the transport and storage of energy
via amide-I vibrations. The Hamiltonian is given in more
details in section II. Due to the coupling of the dispersive
amide-I system to the lattice, the nonlinear forces occurring
can prevent the distribution of an initially localized amide-I

excitation over the chain. If the dispersive and the nonlinear
forces are balancing each other, the excitation will remain
localized on a small number of sites at each time due to the
nonlinearity, and the whole system of amide-I excitation to-
gether with its stabilizing lattice distortion can move through
the system due to dispersion. In other words a solitary wave
or a soliton could be formed. However, up to now such solitons
have not been observed directly in proteins. Only in
acetanilide (ACN) which forms single crystals and contains
hydrogen bonded chains of C=O groups as in proteins, pinned
solitons (which do not move) of the Davydov-type could be
observed spectroscopically by Careri’s group (see again
Scott’s review [1] for a detailed discussion). Since proteins
are aperiodic and do not form single crystals an observation
of Davydov solitons, if present there, is more or less impos-
sible up to now. Even accurate measurements of the con-
stants appearing in the model is not possible. Therefore it is
very important to study the dynamics in the Davydov model
theoretically as a function of the parameter values, the de-
gree of disorder and temperature to be able to obtain infor-
mation whether the formation of solitons is possible at all for
reasonable windows in the parameter space or not. Especially
it is of utmost importance to obtain approximate solutions of
the Schrödinger equation for the Davydov Hamiltonian as
close as possible to the unknown exact solutions. This work
deals with the latter problem and especially the ansatz states
proposed by Davydov for this purpose are investigated. Fur-
ther we propose a propagation scheme in the conlusion, be-
cause in that way the inclusion of temperature effects into
the theory is more straightforward than in the case of an ansatz
treatment.

These basic concepts of the Davydov soliton mechanism
for energy transport in proteins [2-5], as well as the different
attempts to include the effects of finite temperature into the
model [4-13] and the controversy about thermal stability of
protein solitons is discussed in the introduction of Ref. [6].
Therefore we do not want to elaborate on these points here.
The extensive discussion on the validity of the different ansatz
states used in the literature [14-23] is also reviewed there
[6]. The ideas on which the Davydov mechanism is based
are nowadays extended also to other systems in more or less
similar ways. Davydov himself e.g. used a bisoliton concept
to explain high-T

c
 superconductivity in materials containing

copperoxide, and a Hamiltonian similar to that for the de-
scription of energy transport in proteins for the explanation
of electron transport (electrosoliton) which is important in
biological redox processes where proteins serve as
catalysators. A wide variety of applications of these ideas is
collected and dicussed again by Scott in his review [1].

In a series of papers we dealt mainly with ansatz states
which include quantum effects in the lattice into the descrip-
tion and with the inclusion of effects of finite temperature
into these theories [6,20, 24-27]. Since already at 0K the
|D

1
> ansatz is still an approximation, one would like to have

a numerical estimate of the errors introduced by this approxi-
mate ansatz. Therefore, we presented in Ref. [27] expecta-
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tion values of several operators in the state |δ> which repre-
sents the error of the |D

1
> state if it is substituted into the

time dependent Schrödinger equation:

 ( )[ ]i t H D JDh ∂ ∂ δ− =$
1 .

J is one of the parameters in the Hamiltonian (see below).
For an exact solution J|δ>=0 would be required. We com-
pared these expectation values with the corresponding ones

in the state ( )$H J DD 1  to get a numerical estimate of the

errors occurring. For the sake of comparison the same was
done also for the semiclassical so-called |D

2
> ansatz [2]. In

this study we found that the errors introduced in these expec-
tation values compared to those in the corresponding

( )$H J DD 1 state are negligible. Since the set of basis states

is incomplete when using the |D
1
> ansatz, this does not en-

sure a good quality of the |D
1
> approximation, however, it

could be expected, that the lack of basis states, if important,
should lead to larger errors also within the basis space actu-
ally employed, than those we found numerically.

Since we are extending at present the application of |D
1
>

type ansatz states also to the polyacetylene case [28] it seems
to be desirable to obtain some more detailed informations on
the limitations of this ansatz. For this purpose we want to

expand the exact solution [ ]Φ Φ= −exp $iH tD h 0 for the

Davydov Hamiltonian ( )$HD , where |Φ
o
> is the initial state,

in a Taylor series in time and compare the results with those
from a |D

1
> simulation. Attempts into this direction have been

reported previously by Cruzeiro-Hansson, Christiansen and
Scott [29]. However, they restricted their considerations to a
dimer and found that second order terms can be neglected
only for times much smaller than 0.1 ps. Further they give no
comparisons to approximate simulations and for the case of
N sites they give a system of equations, but they draw no
numerical conclusions from it.

In order to be able to work numerically with such an ex-
pansion, we need informations on the time scales in which
the different orders are correct. For this purpose we study in
the present paper the performance of such expansions for
analytically known solutions for some special cases of the
Davydov Hamiltonian. We give the analytical solutions and
their expansions in Taylor serieses in time. Then we com-
pare norms, total energies, displacements, momenta and ex-
pectation values of the number operators for the wave func-
tions in different orders with those obtained from the exact
solutions. Further we draw some conclusions on the form of
initial states, necessary for reliable |D

1
> simulations for these

special cases. In the following paper (J. Mol. Model., ac-
cepted) we will discuss the results for the complete Davydov
Hamiltonian, based on the results of this work.

Finally in the third paper of this series we will present
applications of dynamics, obtained with the methods dis-

cussed. Specifically we will present vibrational spectra which
can be computed directly from simulations obtained with
states of |D

1
> type. Since the Davydov mechanism was intro-

duced to explain energy storage and transport in proteins,
first of all the question of the existence of such solitons in
proteins is of utmost important. Our third paper will also
deal with this problem. We want to present simulations in-
cluding temperature effects, and a detailed study on the ini-
tial states, from which solitons are formed. Then we need to
explain, why in infrared and Raman spectra of polypeptides
no signs of solitons in the amide-I region are found, although
theoretically they exist. Further, our model after some exten-
sions can be used to study also coupling of the amide-II vi-
bration (where the N-H bonds are stretched) to optical and
acoustical lattice phonons. The reason, why such features
should be included also is, that experimentally unusual fea-
tures in the spectra of polypeptides in the amide-II region
were found, and still lack an explanation (see [34] for a short
review and further references). It is also of importance to
apply the model to acetanilide (in modified form, since there
the C=O stretching vibration is coupled to optical phonons),
because in this case at low temperature the normal amide-I
band vanishes and a new solitonic band appears in the Raman
spectra (see [1] for discussion and references). Thus the
acetanilide case could give additional insight, up to what
extent the Davydov model is able to explain measured spec-
tra, especially as function of temperature.

Davydov’s Hamiltonian and the |D
1
> Approximation

The Hamiltonian, as well as the form of the |D
1
> approxima-

tion have been discussed extensively in the literature. How-
ever, for the purpose of clearcut definitions in the following,
we repeat the basic formulas here. The Davydov Hamiltonian
for our problem [2] reads as

( )[
( ) ( )

$ $ $ $ $ $ $

$ $ $ $ $ $
$

H E a a J a a a a

q q a a q q

D n n n n n n
n

p
M

W
n n n n n n

n

= − +

+ + − + − 


+ +
+ +

+

+
+

+

∑ 0 1 1

2 2 1
2

1

2

χ (1)

In equ. (1) â
n
+ (â

n
) are the usual boson creation (annihila-

tion) operators [4] for the amide-I oscillators at sites n (see
sketch at the top of the following page).

From infrared spectra the ground state energy of an iso-
lated amide-I oscillator can be deduced (E

0
=0.205 eV).  Usu-

ally for all parameters in equ. (1) site-independent mean val-
ues are used. The average value for the coupling of the tran-
sition dipole moments of neighboring amide-I oscillators is
J=0.967 meV. The average spring constant of the hydrogen
bonds is taken usually to be W=13 N/m, as measured in crys-
talline formamide. p

n̂
 is the momentum and q^

n
 the position

operator of unit n. The mass M of a peptide unit is taken as
the mean value of the masses of the units in myosine
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(M=114m
p
; m

p
 is the proton mass). The energy of the CO

stretching vibration in hydrogen bonds is a function of the
length r of the hydrogen bond (E=E

0
+χr). For χ the experi-

mental estimates are between 35 pN and 62 pN. Ab initio
calculations on formamide dimers usually lead to χ=30-50
pN, however, with small basis set ab initio calculations even
negative values for χ were obtained (see e.g. [1] for a review
and references).

The one-particle Hamiltonian [2,3], where one-particle
refers to the quanta of the amide-I vibration, in second
quantized form is given by

( )

( )

[ ]

$ $ $ $ $ $ $

$ $ $ $ $ $

,

H E a a J a a a a

b b B b b a a

B
M

U U

D n n n n n n
n

k k k nk k k n n
nk

nk
k k

n k nk

= − +





+ + + +












= −

+
+

+ +
+

+ + +

+

∑

∑∑

0 1 1

1
2

1
1

2

h

h

ω

χ
ω ω

(2)

b
k̂
+ (b

k̂
) are creation (annihilation) operators for acoustic

phonons of wave number k. The translational mode has to be
excluded from all summations. Note that in the simulations
presented we use again the asymmetric interaction model
where only the coupling of the oscillator n to the hydrogen
bond between n and n+1 in which the oscillator takes part is
considered. ω

k
 denotes the eigenfrequency of the normal mode

k and U contains the normal mode coefficients. ω and U are

obtained by diagonalization of the matrix V with elements

( ){ ( )
}

Vnm
W
M nm nN m n n m n

n mN nN m

= − − − − −

− −
+ −2 1 11 1 1

1 1

δ δ δ δ δ

δ δ δ δ
, ,

(3)

( )U VU U U UU
kk

k kk
+ + += = =

'
' ;ω δ2 1

The form of V implies that we use cyclic boundary condi-
tions and N units.

First of all we rewrite our Hamiltonian into the form

[ ]

$ $ $ $ $ $ ;

$ , $

H H E a a H D

H D

D n n
n

k
k

= + + ≡ +

=

+∑ ∑0
1
2

0

hω

(4)

For the exact solution the time dependent Schrödinger equa-
tion holds:

i H
t Dh

∂
∂ Φ Φ> = >$ (5)

Now we factorize our exact wave function as

[ ]Φ > = − > ≡ + ∑exp it
k

k

D D E
h

hψ ω; 0
1
2 (6)

Then we obtain (D is a time independent real scalar)

[ ] ( )
[ ] [ ]

$ $ $H D D H

i D D D i

D
it

t
it it

t

Φ

Φ

> = − ⋅ > + >

> = ⋅ − > + − ⋅ >

exp

exp exp

h

h h
h h

ψ ψ

ψ ψ∂
∂

∂
∂

(7)

We know that the exact wave function can be written in the
form

( )[ ] ( )ψ = +∑exp $ $S t a t an n n
n

0
(8)

where a
n
(t) is a complex scalar and |0> the vacuum state. It is

known that the generator ( )$S tn contains only phonon opera-

tors and complex scalars (see [16] for details). Therefore we
can write

[ ] ( )[ ] ( )$ exp $ $ $ $D D E S t a t a a ait
n n m m n

nm

k
k

Φ = − ⋅ +






+






+ +∑

∑

exp
h

h

0

1
2

0

ω ψ

(9)

( )
[ ]

$ $ $ $ $ $

$

a a a a a a

D D D

m m n m nm n m

it

+ + + += +

⇒ = ⋅ −

0 0δ

ψΦ exp
h

Together with equ. (7) this leads to

[ ] ( )
[ ] ( )

i D D i

H D D H

t
it

t

D
it

h h
h

h

∂
∂

∂
∂ ψ

ψ

Φ

Φ

= − ⋅ + ⋅

= − ⋅ + ⋅

exp

exp$ $ (10)
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and therefore from

i H E a a Ht D n n
n

k
k

h h
∂
∂ ωΦ Φ Φ= = + +













+∑ ∑$ $ $ $
0

1
2

(11a)
follows

Φ = − +
























⋅∑exp it
k

k

E
h

h0
1
2 ω ψ (11b)

where |ψ> has to obey the Schrödinger equation

i H
t

h
∂
∂ ψ ψ= $ (12)

with the simplified Hamiltonian

( )

( )

$ $ $ $ $

$ $ $ $ $ $

H J a a a a

b b B b b a a

n n n n
n

k k k nk k k n n
nk

= − + +

+ + +












+
+ +

+

+ + +

∑

∑∑

1 1

hω (13)

A more simple form of this proof is given in Appendix E.
Note, that the zero-point energies in the exponential prefactors
are present, whether the coupling between amide-I oscilla-
tors and the phonons exists or not, since also if χ=0 holds,
the lattice is still present in the Hamiltonian. Thus a remark
of Kapor [30] on this topic does not apply. The |D

1
> ansatz

for |ψ> has the form

( )D a t U an n n
n

1 0= +∑ $ $

(14)

where the coherent state operators are given by

( ) ( )

( ) ( )[ ]

$ exp exp $

exp $ $*

U b t b t b

b t b b t b

n p nk
k

nk k
k

p

nk k nk k
k

p

0 0

0

1
2

2= −












⋅












= −












∑ ∑

∑

+

+

(15)

Note, that the second equality holds only if the operator
acts on the phonon vacuum |0>

p
, and that in our notation

|0>=|0>
e
|0>

p
, where |0>

e
 is the vacuum state for the amide-I

oscillators (exciton vacuum). A simpler form of this ansatz
is the |D

2
> state which is a product state:

( )D a t a Un n e p
n

2 0 0= +∑ $ $

( ) ( )

( ) ( )

$ exp

$ $*

U b t b t b

b t b b t b

p k
k

k k
k

p

k k k k
k

p

0 0

0

1
2

2

= −
















⋅












= −












∑ ∑

∑

+

+

exp

exp

(16)

The b
nk

(t) and the b
k
(t), respectively, are the coherent state

amplitudes and |a
n
(t)|2 is the probability to find an amide-I

quantum at site n. These are the quantities which have to be
determined.

The equations of motion for these quantities can be ob-
tained with the Euler-Lagrange equations of the second kind
(see [6,17,20,24-27]). Note, that with the Hamiltonian method
as used previously by Davydov and others incorrect equa-
tions are obtained in case of the |D

1
> state [17]. The final

equations of motion for the |D
1
> ansatz are

( )
( )[ ]

( )

i a b b b b a

B b b b a

J D a D a

n
i

nk nk nk nk n
k

k nk nk nk nk
k

n

n n n n

h

h

h& & &* *

*

,n ,n

= − − +

+ + + +

− +

∑

∑
+ + − −

2

2

1 1 1 1

ω
(17a)

( ) ( )

( )

i b b B J D b b
a

a

D b b
a

a

nk k nk nk n n k nk
n

n

n n k nk
n

n

h h&
,n ,

,n ,

= + − −



 +

+ −





+ +
+

− −
−

ω 1 1
1

1 1
1

where the coherent state overlaps are given by

( )D b b b b b bnm nk mk nk mk nk mk= − − + −










∑exp

k

1
2

2 * *

(17b)

Mechtly and Shaw [16] have shown, that for initial con-
ditions a

n
(0)=δ

n1
 and b

nk
(0)=0 the small time behaviour of

the system is given by

( ) ( )
a t i

J M

W

t

nn

n n

→










−

− −
2

1

2

2

1 1

h !

( )b t i W Q
t

nnk mk k
m

n

→ −










=

∑
1

(18a)
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( )[ ] ( )
W k m a Q

N a

W

M

W
a

J

W

M
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k= ⋅ + =

+

≡ ≡

2
4

1

4
2 2

1
2

2

cos ;

;

παω
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χ
h

h

where in their case the eigenfrequencies are

[ ] ( )ω π
k a

ka j
N a

k j N= = =+
2

2 1
1 2sin ; ; , ,..., (18b)

Thus two factors in one of the terms in equ. (17a) where
an(t) occurs in the denominator have for small t the behav-
iour

( )
( )

( ) ( )[ ]

lim ~

lim ~,

t

n

n

n

n

t
n k nk

a t

a t

t

t t

b t b t t

→
−

−

−

→
−

=

−

0

1
2

1

0
1

1

(18c)

and therefore the product of both approaches a constant as t
approaches zero. The other term has the behaviour

( )
( )

lim ~
t

n

n

n

n

a t

a t

t

t
t

→
+

− =
0

1
1 (18d)

and vanishes when t approaches zero. Thus in principle the
denominators a

n
(t) in equ. (17a) pose no difficulties, although

if they vanish for t approaching zero. However, in [16] it is
reported that instabilities are encountered when the short time
solutions are incorporated into a program.  To avoid such
problems we follow the suggestion given in [16] and all a

n

which vanish in the initial state are put to a
n
(0)=x, where x is

a small, physically insignificant number, e.g. x=0.005 [16].
  The equations for the |D

2
> state, transformed from the

normal mode to the coordinate representation, are

( ) ( )
( ) ( )

i a J a a q q a

p W q q q a a

q
p

M

n n n n n n

n n n n n n

n
n

h&

&

&

= − + + −

= − + + −

=

+ − +

+ − −

1 1 1

1 1
2

1
22

χ

χ
(19)

The numerical solution of all these equations can be ac-
complished with the help of a fourth order Runge-Kutta
method. Note, that the lattice parts of equ. (19) are not en-
tirely classical as their form might suggest, but the q

n
’s and

p
n
’s have to be viewed as expectation values of the corre-

sponding quantum mechanical operators rather than as clas-
sical variables. However, the |D

2
> state is the exact solution

for $Hp if the operators of the displacements and momenta

are replaced by real numbers q
n
(t) and p

n
(t), respec-

tively [31,32].

Initial States

In this subchapter we want to discuss the question of the
correctness of the |D

1
> state in the decoupled (χ=0) and in

the transportless (or small polaron) case (J=0). Especially it
is interesting to investigate whether or not this poses restric-
tions on the form of the initial state. This is an important
problem, since for the initial state (time t=0) we have the
physical situation that a set of coefficients for the amide-I
oscillators in the wave function, {a

n
(0)}, and a set of

displacements and momenta {q
n
(0),p

n
(0)} is given. The ques-

tion is now, how to compute coherent state amplitudes from
these sets of initial values.

The Small Polaron Limit

First we want to discuss the transportless case, also called
the small polaron limit (J=0). Since here we have an excita-
tion which is not transported along the chain, but deforms
the lattice, it can be called a polaron and further if the initial
excitation is localized, it is called a small polaron. Brown et
al. stated in 1986 (Ref. [14], second paper) that with |D

1
>

dynamics incorrect values for the displacements and conse-
quently also for the phonon energy are obtained. This result
is due to the use of the Hamiltonian method introduced by
Davydov [2,3] which yields incorrect equations of motion in
the |D

1
> case [17]. In his paper from 1988 (Ref. [14], last

paper), Brown concluded that |D
1
> satisfies the Schrödinger

equation in the small polaron limit, but derives no equations
of motion. Again in 1988 ( Ref. [14], third paper) Brown et
al. stated that an ansatz treatment yields correct displacements
but incorrect phonon energies. This statement was based on
the |D

2
> ansatz, where it is certainly correct, however, since

no direct reference to |D
2
> was made there, it could lead to

the impression, that any ansatz treatment would be plagued
by the same problem, what is not the case. To avoid any
misunderstandings, we give in Appendix A a complete deri-
vation of the exact solution for the small polaron limit which
is a |D

1
> state, together with the expressions for the relevant

expectation values.
Assuming now a set of initial conditions for the lattice

{q
n
(0),p

n
(0)}, then the lattice energy is clearly given by

( ) ( ) ( )[ ] ( )
E

W
q q

p

Mlat n n
n

n

0
2

0 0
0

21
2

2

= − +











+∑ (20)

Let us construct now from these initial conditions a set
{b

nk
(0)} of coherent state amplitudes following the sugges-

tion given by us in [28]:

( )P ann n= 0
2

(21)

( ) ( ) ( )b
P

M
U q

i

P M
U pnk

nn

k
nk n

nn k
nk n0

1

2
0

1

2
0= +

ω
ωh h
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which clearly gives the correct displacements and momenta
back, and thus leads also to a correct exciton-lattice interac-
tion term, which is linear in the phonon operators. However,
substitution into that part of equ. (A23) which represents the
energy of the decoupled lattice as derived in Appendix A
leads to

( ) ( )

( ) ( )

E
P

M
U U q

p

M
U

P
Wq

p

M

lat
nn

nk k nk n
n

nk
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n
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


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

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= +




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


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∑∑∑

∑

1

2
0

0

2

1
0

0

2

2 2
2

2

2
2

ω

(22)

which obviously differs from equ. (20) and is therefore in-

correct. Analytical expressions for ω and U (in real repre-

sentation) are given in Appendix B. From that we conclude
that the choice for b

nk
(0) is consistent with the exciton-lat-

tice interaction but not with the lattice energy. The reason is,
that the averaged equations which the b

nk
(0) have to obey

( )[ ] ( )P b
M

U qnn nk
k

nk n
n

Re 0
2

0 0−







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


=∑ ω

h

( )[ ] ( )P b
M

U pnn nk
k

nk n
n

Im 0
1

2
0 0−



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
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=∑

hω (23)

( ) ( ) ( )[ ] ( )
hω k nk nn

W
n n

n

n

b P q q
p

M
0 0 0

0

2
0

2

2 1
2

2

− − −











=+∑

simply do not contain enough information to determine
the b

nk
(0) uniquely. Further the most obvious choice for a

solution, namely to set each term in the first two sums indi-
vidually to zero (from this equ. (21) follows) does not yield a
solution which could fulfill all three equations.

However, we can derive a consistent choice for the initial
conditions, if we assume the b

nk
(0) as site independent

(b
nk

(0)=b
k
(0)), i.e. if we choose the initial state to be of |D

2
>

form. From this initial state the site dependence of the b’s
present in the evolution governed by the complete
Hamiltonian evolves naturally from the |D

1
> equations of

motion. If we set b
nk

(0)=b
k
(0) in the above equations, we get

instead of a weighted average simply factors Σ
n
P

nn
=1, and

thus the initial values

( )[ ] ( )Re ' '
'

b
M

U qnk
k

n k n
n

0
2

0= ∑ ω
h (24)

( )[ ] ( )Im ' '
'

b
M

U pnk
k

n k n
n

0
1

2
0= ∑

hω

With this choice we obtain again the correct values for
q

n
(0) and p

n
(0) back and thus also the correct exciton lattice

interaction. Further, this ansatz yields also the correct lattice
energy:

( )

( ) ( )

( ) ( )
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(25)

where V is defined in Appendix B.

In the case of ν bosons occupying the same state the ini-
tial variables are given by
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However, here we have [28] alternatively

[ ]
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(27)

Therefore it is obvious, that in order to obtain a correct
initial state we have to start from a |D

2
> like ansatz at t=0,

calculated from the initial set of displacements and momenta.
Otherwise we would obtain an incorrect lattice energy and
consequently an incorrect time evolution.
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The Decoupled Case

In the decoupled case (χ=0) we have the Hamiltonian

( )
$ $ $

$ $ $ $ $

$ $ $

H J H

J J a a a a

H b b

DC lat

n n n n
n

lat k k k
k

= +

≡ − +

≡

+
+ +

+

+

∑

∑

1 1

hω
(28a)

Since the two parts of the Hamiltonian are independent,
the exact solution is a product of a state for the excitons with
a state for the phonons. The separation ansatz leads to

[ ]
[ ]

ψ ψ ψ

ψ ψ ψ

∂
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∂
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l t e e

e t l lat l

i J

i H

h

h

− =

− −

$

$ (28b)

which can only be fulfilled if both sides of the equation van-
ish independently. Here |ψ

e
> is the exciton and |ψ

l
> the lat-

tice (phonon) state. The phonon operator is a sum of opera-
tors for each normal mode and its solution is a product of
coherent states for each mode:

( ) ( )[ ]
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Thus the exact solution of

i H
t l lat lh

∂
∂ ψ ψ= $ (30)

is given by our ansatz if

( ) ( )b t b ek k
i tk= −0 ω (31)

where b
k
(0) has to be constructed from the initial

displacements and momenta as described in the previous
chapter. The exact solution of the Schrödinger equation for
the oscillator system is given in Appendix C. It is obvious
that the exact solution is a |D

2
> state which is identical to a

|D
1
> state  with site independent b

nk
(t).

Thus we have to show, that from the equations of motion
for the |D

1
> ansatz the b

nk
(t) remain site independent if we

start from a site independent initial state in the case χ=0:
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Thus we obtain
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and together with equ. (17) we have
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At the beginning of the first time step, i.e. at t=0 we can
replace b

nk
(0) by b

k
(0) from our initial state and the equa-

tions of motion yield

( ) ( ) ( ) ( )[ ]
( ) ( )

D i a J a a

i b b

nm n n n

nk k k
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Thus after the first time step (t=τ) we obtain

( ) ( ) ( ) ( ) ( )[ ]
( ) ( )( )

D a a
iJ

a a

b b i

nm n n n n

nk k k

τ τ τ

τ ω τ

= = + +
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0 1

1 1;
h

(36)

Obviously the b’s remain site independent after the first
time step, thus consequently for all times, and therefore the
time simulation with the equations of motion for the |D

1
>

state yields the correct solution of |D
2
> form, provided the

initial state is of this form. Note, that for site-independent
b’s also the, for the decoupled case artificial coupling terms
in equ.’s (32) and (34) vanish and that further we have
D

nm
(t)=1.

The Complete Hamiltonian

After we have shown, that in both special cases, the initial
state has to be of |D

2
> form, i.e. with site independent coher-

ent state amplitudes b
nk

(0), if a simulation using a |D
1
> ansatz

should lead to the correct analytical solution, we have to ask
how such an initial state evolves in time when we apply the
complete Hamiltonian. Since in this case, the basis space of
|D

1
> is incomplete we have to study the errors developing

through the use of this ansatz. For this purpose we can use
the fact that [17]

( )i H D J
t Dh

∂
∂ δ− =$

1 (37)

where the form of the error state |δ> as function of
{a

n
(t),b

nk
(t)} as computed in a |D

1
> simulation is known [17].

In our previous work [26] we have derived expressions for
the expectation values of different operators for the two states

( )$H J D1 and |δ> and compared them in numerical cal-

culations. Such a procedure can serve as the appropriate tool
to answer our above mentioned question. Therefore we in-
troduced cyclic boundary conditions into our program [26]
and performed simulations for χ=0,10,20,30,40 pN. For χ=0
we found that all the expectation values computed for the
state |δ> from a numerical |D

1
> simulation vanish, as it is to

be expected because in this case |D
1
> yields the exact solu-

tion for site independent amplitudes b
nk

(0).
To be more precise we applied as initial conditions for

the oscillator system

( ) ( )
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−









 (38)

where R is a normalization constant, J=0.967 meV, W=13 N/
m, X=62 pN (note, that X is used only in the initial state for

all cases, in contrast to χ), and the maximum of the function
was put at site o=11 in a chain of N=21 units. The
displacements and momenta of the lattice were chosen such
that kinetic and potential energy each equal 0.5(N-1)k

B
T for

T=300K. This energy was distributed according to Bose-Ein-
stein statistics on the normal modes, excluding the transla-
tion:
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where M=114 mp, and kB is Boltzmann’s constant. For the
fourth order Runge-Kutta simulations we used a time step of
1 fs and a total simulation time of 100 ps, corresponding to
100,000 time steps. In this period the error in total energy
was typically less than 5-10 peV (much less than 0.1 % of
the exciton phonon interaction energies) and the error in norm
around 1 ppb (parts per billion).

In Fig. 1 we show the norms

( ) ( ) ( )S t H J D H J DH = $ $
1 1 and S

E
(t)=<δ|δ> for three val-

ues of χ, namely 0, 10, and 20 pN. Note, that for these cou-
pling strengths no solitons are present in the system. Here
we see, that for the decoupled case (Fig.1a) the norm of the
error state is below machine accuracy, since here we obtain
the analytical solution from our simulations. The norm of

( )$H J D1 decreases slightly in the course of the simula-

tion. When we switch on the coupling to a small value of
χ=10 pN (Fig.1b), the increase of S

H
(t) with time becomes

rather large, up to more than 35. However, the increase of
the error S

E
(t) is much smaller, between 0 and 0.27, indicat-

ing the accuracy of the |D
1
> simulation. For the larger cou-

pling χ=20 pN (Fig. 1c) S
H
(t) increases by a factor of 10 up

to values around 350. The increase of the error is much
smaller, namely up to a value of 1.5. If we increase χ further
up to 30 and 40 pN (not shown here), the increase of S

H
(t)

per 10 pN increase in coupling remains the same, while the
maximum values of S

E
(t) start to converge to maximum val-

ues around 2.2-2.3. When increasing the coupling further we
reach the values already discussed in [26]. Thus it is obvi-
ous, that the error in the norm starts to increase smoothly
with χ increasing from its value of 0 where |D

1
> is the exact
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Figure 1: The norms ( ) ( ) ( )S t H J D H J DH = $ $
1 1 and

S
E
(t)=< δ|δ> for the two states under consideration as function

of time for three values of the coupling constant:

(a) χ=0  pN (S
H
 relative to S

H
(0)=675,827.93106)

(b) χ=10 pN (S
H
 relative to S

H
(0)=676,851.60694)

(c) χ=20 pN (S
H
 relative to S

H
(0)=677,877.52615)

solution, when the simulation is started from an initial |D
2
>

like state. Fig. 2 shows the probabilities N
n
(t)=<D

1
|â

n
+â

n
|D

1
>

to find an amide-I quantum at site n as function of time for
the three values of the coupling constant.The results show
that in all three cases no soliton is formed from the initial
sech-distribution. The dispersion of this distribution becomes
less regular with increasing coupling strength, because the
phonons, coupled with increasing strength to the oscillators,
are initially excited with an energy corresponding to a tem-
perature of 300K, which leads to a large aperiodicity in the
lattice coordinates.

In Fig. 3 finally we show the expectation values

( ) ( )N H J D a a H J Dn
H

n n= +$ $ $ $
1 1 and NE

n
(t)=<δ|â

n
+â

n
|δ> of

the number operators again for the three values of the cou-
pling constant.

Naturally, for the decoupled case the error is less than
machine accuracy, because in this case our evolution is ex-
act. With increasing coupling strength, we find a slight in-
crease of the errors, however, about six orders of magnitude
smaller than the corresponding values of NH

n
(t). Thus also

here the deviation of our results from the exact solution of
the Schrödinger equation is very small, even more or less
negligible, when using the |D

1
> ansatz starting from an ini-

tial |D
2
> like state. We do not discuss the expectation values

of displacement and momentum operators here, because they
behave rather similar as those of the number operators we
have just studied. Thus our conclusion drawn from the ana-
lytically solvable special cases as discussed in the previous
subchapters remain valid also when we apply the complete
Hamilton operator in numerical simulations.

Therefore, we can savely draw as final conclusion, that
indeed the initial state has to have the form of a |D

2
> state,

i.e. site independent coherent state amplitudes b
nk

(0), in or-
der to be able to obtain reliable results from |D

1
> simulations.
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Figure 2: The probability N
n
(t)=<D

1
|â

n
+â

n
|D

1
> to find an

amide-I vibrational quantum at site n as function of time for
three values of the coupling constant:
(a) χ=0 pN (b) χ=10 pN (c) χ=20 pN

Figure 3: The expectation values

( ) ( )N H J D a a H J Dn
H

n n= +$ $ $ $
1 1 (a,c,e) as functions of

site and time for three values of the coupling constant:

(a,b) χ=0 pN      (c,d) χ=10 pN      (e,f) χ=20 pN
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Expansions of Exact Solutions

Since in the following paper we want to use for the general
case expansions of the exact wave functions in polynomials
in time, it is very important to get a reliable tool to judge up
to which time a given order of the expansion can be consid-
ered as reliable. The best way to do so is the expansion of
exactly known solutions in such polynomials and to com-
pare the results of different orders with the exact states. There
are in principle two ways to compute such expansions. The
simplest one is to expand directly the exact solution. The
other one, which has to be used in cases where the exact
solution is not known, is to expand the formally exact wave
function
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Thus a given order µ can be written as
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In the present work we used both methods, just to avoid
errors in the calculation. Then expectation values for any
operator Ô can be computed from expectation values in lower
order by
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In case of Ô being hermitian, the second term reduces to

( )2
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Figure 3 (continued): The expectation values
NE

n
(t)=< δ|â

n
+â

n
|δ> (b,d,f) as functions of site and time for

three values of the coupling constant:

(a,b) χ=0 pN      (c,d) χ=10 pN      (e,f) χ=20 pN
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Further the expectation value can be expanded in any case
to yield

( )ψ ψ µ
ν

ψ ψµ

ν

µ ν
ν

µ
$ $O

T
O− =

=

−

∑1
0

1

! (44)

The properties of the different orders can further be used
to transform expectations values of the Hamiltonian to over-
lap integrals:

ψ ψ ψ ψ ψ ψµ ν µ ν µ ν
$H = =+ +1 1 (45)

We do not want to elaborate here on more details of the
sometimes tedious calculations and proceed to the two cases
under consideration.

The Oscillator System in the Decoupled Case

Here the relevant expectation values to be computed are

( ) ( ) ( )S tµ ψ µ ψ µ, = , ( ) ( ) ( )H t Hµ ψ µ ψ µ, $= and

( ) ( ) ( )N t a an n nµ ψ µ ψ µ, $ $= +
. These functions have to be

compared with the corresponding results obtained from the
exact solution, namely S(t)=1, H(t)=0 and N

n
(t) as given in

Appendix C for an initial state, where the excitation is local-

ized at one site o, i.e. ( )ψ ψ0 00= = +$ao . The Hamilto-

nian in spatial representation is given by

( )
( )

$ $ $ $ $

$$ $ $

J J a a a a

Ja J a a

n n n n
n

n n n

= − +

= − +

+
+ +

+

+
−

+
+

+

∑ 1 1

1 10 0
(46)

Thus we can directly write down the first three orders of
the exact solution

ψ 0 0= +$ao

( )ψ1 1 1 0= − +−
+

+
+J a ao o$ $ (47)

( )ψ 2
2

2 22 0= + +−
+ +

+
+J a a ao o o$ $ $

( )ψ 3
3

3 1 1 33 3 0= − + + +−
+

−
+

+
+

+
+J a a a ao o o o$ $ $ $

Obviously in any order µ the excitation is at maximum
transported only µ sites away from the initial excitation. Since
we can also perform a direct expansion of the state to any

arbitrary order, it seems to be more advantegeous to use for
this purpose the normal mode representation (Appendix C)

$ $ $ $ $ $ $ ; $ $J Ja Xa Jc c J c c a Rck k k
k

= − = − = − =+ + +∑λ λ

(48)
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e
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N
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
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1
2

2

0 0

2

0

π

λ π

ψ

; cos

With the transformations (here a
n
(0)=δ

no
)

( ) ( ) ( ) ( )c R a a t R c tk nk n
n

n nk k
k

0 0= =∑ ∑* ;
(49)

we can write down the solution in any order in time by
expansion of the exact wave function as

( ) ( )

( )

ψ µ µ

ν
λ

π ν

ν

µ

= =

= 



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1 1
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! h

(50)

The expectation values of the number operators are con-
sequently

( ) ( )
( )( ) ( )

N t a t

N
e i

J
t

n n

i

N
k k n o

kk

k k

µ µ
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(51)

However, in the form N
n
(µ,t)=|a

n
(µ,t)|2, where a

n
(µ,t) is

actually calculated from equ. (50), the expectation values
are most easily programmed for arbitrary order. From (51)
we obtain

( ) ( ) ( )
S t N t

N
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J
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(52)

The expectation value of the Hamiltonian is obtained as

( ) ( ) ( )

( ) ( ) ( )

H t a t a t a Ja

J

N
a t a t e

n n n n
nn

n n
nn

k

i

N
k n n

k

µ µ µ

µ µ λ
π

, , , $ $$

, ,

'
*

'
'

'
*

'

'

= =

= −

+

−

∑

∑ ∑

0 0

2
(53)
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Substitution of the explicit values for the coefficients
yields the final expression

( ) ( )
H t

J

N
i
J

tk
k

kµ λ
ν ν

λ
ν ν ν

ν ν

µ
,

! '!

' '

, '
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0
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(54)

Note that all the double sums over the different orders in
(52) and (54) are real, because each term Tνν’

 occurs twice.
The Tνν are anyway real. Therefore we always obtain combi-
nations (Tνν’

+Tν’ν) which can only be imaginary, if one of the
indices is odd and the other one even. However, just in this
case due to the minus signs we have Tνν’

=-Tν’ν, and thus all
imaginary contributions vanish, and the sum can be restricted
to terms where (ν+ν’) is even. Therefore we can write after
some reordering

( ) ( )
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N
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Since we have
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(56)

and our summation is restricted to even values of (ν+ν’), we
have in the k-summation only odd exponents (ν+ν’+1) at λ

k
,

and thus H(ν,t)=0. This result can be used to check together
with equation (53) the correctness of the program. Since in
S(µ,t) we have in the k-summations only even exponents
(ν+ν’) at the λ

k
, this quantitity does not vanish:

( ) ( )( ) ( )
( ) ( ) ( )[ ]{ }

( )
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2

3 2

2
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Figure 4: The norm S(µ,t) of the state vector in the decoupled
case for different orders µ (µ=1-7) of the wave function (in-
dicated by numbers at the different curves) as function of
time (the exact value is S(t)=1).

Note, that (3ν’+ν)/2 is integer, because (ν’+ν) is even.
Finally, from equ. (52) we obtain

( ) ( )S t S t
N

e e
i
J

t i
J

t

k

N k k

= = =
→∞

−

=
∑lim ,

µ

λ λ

µ 1
1

1

h h
(58)

We have calculated these expectation values for the case
J=0.967 meV up to the 7th order of the state vector, as de-
scribed above. In all these calculations, the total energy was
in absolute value smaller than 10-17 eV, i.e. it is vanishing
within machine accuracy. In Fig. 4 we show the norms S(µ,t).
We draw all computed orders in one plot. The time covered
was 1 ps. It is obvious, that starting from third order, the
norm is reasonably correct up to a time of roughly 0.6-0.8
ps, while in larger orders it is correct in the full interval of 1
ps. In Fig. 5 we show the time evolution of the expectation
values of the number operators N

n
(t) for the exact state vec-

tor (Fig. 5a).
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Obviously, within 1 ps the initially localized excitation
spreads only over a few sites left and right of the initial exci-
tation site. In the further parts of Fig. 5 we plot the errors of
the corresponding expectation values
N

n
(µ,t), F

n
(µ,t)=|N

n
(t)-N

n
(µ,t)|, for the state vectors in the dif-

ferent orders µ in time. It is clear that in first or second order,
only in a small time interval of  0.1 ps (1st order) or  0.3 ps
(2nd order) the errors are reasonably small, while in third or-
der already a time interval of  0.6 ps is covered. In the higher

orders, µ=4-7, the fine structure of the transport evolves, and
the errors are reasonably small over the whole interval of 1
ps. In the highest (7th) order the maximum error within this
time is around 0.02. Therefore, if we want to compare results
as obtained from the |D

1
> state with those from an expansion

as described (see following paper) we are only able to do
that up to roughly 0.6 ps time if we want to restrict ourselves
to a third order expansion.

Figure 5. (continued on next page)
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Figure 5: The expectation values of the number operators
N

n
(t) calculated from the exact state vector and the errors

F
n
(µ,t)=|N

n
(t)-N

n
(µ,t)| for different orders µ of the state vector

as function of site and time in the decoupled case:
(a) N

n
(t) (b) µ=1 (c) µ=2 (d) µ=3

(e) µ=4 (f) µ=5 (g) µ=6 (h) µ=7

The Phonon System in the Small Polaron Limit

The conclusion drawn in the last subchapter holds only for a
freely dispersing excitation in the oscillator subsystem. In
the complete system this time evolution is perturbed by the
interaction with the phonons. Thus we have to study also,
how well the lattice is described by such an expansion. To
this end we turn now to the small polaron limit with a local-
ized excitation at a site o (o=11 in our case of a chain with 21
units). Via the interaction of strength χ this localized excita-
tion interacts with the initially unexcited lattice (b

nk
(0)=0). It

excites a shock wave in the lattice which travels roughly with
the speed of sound through the chain. The excitation itself
remains at its initial site, because J=0. The exact solution for
this case |ω> is given in equ. (A14) in Appendix A. The time
evolution of the displacements and momenta, as computed
from the exact state vector, for our case (W=13 N/m, χ=62
pN and M=114 m

p
) is shown in Fig. 6.

Our Hamiltonian in this case is given in equ. (A1) in Ap-
pendix A. The expansion of the wave function in a power
series in time is obtained both by direct Taylor expansion of
all the time dependent terms in the exact solution, equ. (A14),
and ordering according to the powers of t, as well as by
succesive action of the Hamiltonian on the initial state, where
one has to commute the annihilation operators for phonons
occurring in the operator through the expression for the pre-
ceding order until they act on the vacuum and vanish. This
has to be done, until the final form of the state contains only
phonon creation operators. The calculation is rather simple,
but lengthy.

Figure 6: The time evolution of diplacements q
n
(t) (in mÅ,

part a) and momenta p
n
(t) (in meVps/Å, part b) in the small

polaron limit as computed from the exact state vector for χ=62
pN (the plots of the time evolution for χ=35 pN are very
similar, only the absolute values of q

n
(t) and p

n
(t) are of

roughly half the magnitude).
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plicit expressions to Appendix D and turn now to the nu-
merical results.

As mentioned above we show in Figure 6 displacements
and momenta as computed from the exact solution for χ=62
pN. The corresponding plots for χ=35 pN (not shown here),
are looking very similar, however, in that case the absolute
values are roughly half of that for the larger coupling. The
results show the usual shock wave in the lattice, caused by
the localized excitation at site o (o=11 in chains of 21 units).
The wave clearly disperses and becomes enhanced when its
front passes the initial excitation for the second time after
roughly 2-3 ps. Figure 7, which shows the time evolution of
H(µ,t) and of S(µ,t) indicates clearly, that the third order wave
function is reasonably accurate on a time scale which is much
smaller than that for the corresponding third order function
in the decoupled oscillator system discussed before. The rea-
son for this is that the characteristic times of the oscillations
in the lattice are much smaller than the characteristic time of
the oscillator system, as can be seen from Table 1.

Table 1: The characteristic times of the different lattice
oscillations, T

k
=1/ω

k
, and for the amide-I oscillator

subsystem, T J0 = h , for the chain discussed in the main

text (the different coupling constants do not influence these
times).

    k T
k
(ps) T

o
(ps)

 1,20 0.406
 2,19 0.205
 3,18 0.139
 4,17 0.107
 5,16 0.089 0.681
 6,15 0.077
 7,14 0.070
 8,13 0.065
 9,12 0.062
10,11 0.061
  21  ∞

For the case of the smaller coupling (χ=35 pN, m=114
m

p
) the third order curve is close to the corresponding exact

one for a time of roughly 0.12-0.14 ps and up to 0.12 ps for
the larger coupling (χ=62 pN). This is due to the fact that for
larger interaction the shock wave has a larger amplitude,
which is excited on the same time scale. Thus with increas-
ing coupling it becomes more difficult to describe the exact
curves with a low order wave function. In Figure 8 we show
the evolution of the displacements and momenta for sites o
and o+1. In our very small region of time only these two
sites are excited to a non-negligible extent. Already at sites

Therefore we show here only the final results, which are
identical in both procedures described:

( )ψ µ
ν

ψ

ψ ω ψ ψ

ν

ν
ν

µ

ν ν

= = −

= =

=

−
+

∑ T
T

it

ao

!
;

$ ; $

1

1 0 0

h

(59)

From this the components of the state vector in the first
three orders µ are obtained as

ψ 0 0= +$ao

ψ ω ψ ω1 0 0= = ≡+ + + +∑$ $ $ ; $ $y a y B bo o o k ok k
k

h

( ) ( ) ( )
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2 2
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= + +
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+ + +∑

$

$ $ $y B B b ao k ok ok k
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oh (60)
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The relevant expectation values in this case are the norm
of the state S(µ,t)=<ψ(µ,t)|ψ(µ,t)>, the expectation value of
the Hamiltonian and those of the phonon operators

( ) ( ) ( )S t t tµ ψ µ ψ µ, , ,=

( ) ( ) ( )H t t tµ ψ µ ω ψ µ, , $ ,=

( ) ( ) ( )B t t b tk kµ ψ µ ψ µ, , $ ,= (61)

( ) ( )[ ]q t
M

U B tn
k

nk k
k

µ
ω

µ, Re ,= ∑ 2h

( ) ( )[ ]p t M U B tn k nk k
k

µ ω µ, Im ,= ∑ 2 h

The calculation of these expectation values is again rather
tedious, so we refer the reader for some details and the ex-
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Figure 7: The functions H(µ,t) (in meV) and S(µ,t) in the
small polaron limit (the graphs corresponding to the different
orders are marked by µ)
(a) H(µ,t), χ=35 pN (b) S(µ,t), χ=35 pN
(c) H(µ,t), χ=62 pN (d) S(µ,t), χ=62 pN
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(a) q
o
(µ,t); χ=35 pN (b) q

o+1
(µ,t); χ=35 pN

(c) p
o
(µ,t); χ=35 pN (d) p

o+1
(µ,t); χ=35 pN

(e) q
o
(µ,t); χ=62 pN (f) q

o+1
(µ,t); χ=62 pN

(g) p
o
(µ,t); χ=62 pN (h) p

o+1
(µ,t); χ=62 pN

Figure 8 (continued on next page): The displacements
q

o
(µ,t) and q

o+1
(µ,t) together with the corresponding exact

curves (in mÅ) and the momenta p
o
(µ,t) and p

o+1
(µ,t)

together with the corresponding exact curves (in  meVps/
Å) in the small polaron limit (o=11, N=21):

q
0
(mÅ) q

0+1
(mÅ)

p
o

(meV ps/Å)

po+1

(meV ps/Å)

t(ps)t(ps)

t(ps)t(ps)
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Figure 8 (continued)

t(ps) t(ps)

t(ps) t(ps)

p
o+1

(meV ps/Å)
p

o

(meV ps/Å)

q
0
(mÅ) q
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(mÅ)
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Figure 9: As Figure 8 but for a longer time (χ=35 pN):
(a) q

o
(µ,t) (b) q

o+1
(µ,t)

(c) p
o
(µ,t) (d) p

o+1
(µ,t)

t(ps)t(ps)

t(ps) t(ps)

p
o+1

(meV ps/Å)

p
o

(meV ps/Å)

q
0+1

(mÅ)

q
0
(mÅ)
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o-1 and o+2 the excitations within 0.15 ps are negligible (a
maximum of 0.1 mÅ for q

o-2
, of 1.8 mÅ for q

o-1
, of 0.05 meV

ps/Å for p
o-2

, and of 0.7 meV ps/Å for p
o-1

 in case of the
smaller coupling). Thus on our small time scale we deal
mainly with a dimer. In Figure 8a to d the displacements and
momenta for the small coupling case are shown. The reli-
ability of the third order curves in this case obviously corre-
sponds to that of the total energy and the norm as discussed
above. Thus also for displacements and momenta the third
order wave function is a reasonable approximation to the exact
one up to 0.12-0.14 ps in the small coupling case and up to
around 0.12 ps for the larger coupling (Figure 8e to h). The
situation for the momenta is somewhat strange, because at
least for the small coupling the momenta in third order are
reasonably correct on a larger time scale than the
displacements, as can be seen in Fig. 9, and even the
displacements are qualitatively tolerable up to more than 0.2
ps, although the norm and total energy of the third order state
differ to a quite large extent from their correct values. How-
ever, this does not hold for larger coupling constants, like
χ=62 pN, because in this case the unphysical increase of the
factors containing explicit powers of t starts to dominate ear-
lier. This is due to the fact, that for increasing coupling shock
waves with increasing amplitudes are excited on the same
time scale as for smaller couplings.

Conclusion

We have expanded for the exactly solvable transportless and
the decoupled case of the Davydov Hamiltonian the exact
wave functions in power serieses in time. From this one can
conclude up to what times such expansions of the exact wave
functions in the general case are reliable. This information is
important for studies of the short time behaviour of the |D

1
>,

or also generally of other ansatz states. We found that in the
case of coupling between a localized excitation of an amide-
I oscillator in a cyclic chain (small polaron or transportless
limit) to the lattice phonons a third order expansion of the
exact wave function gives reliable results for the relevant
variables of the lattice up to 0.12 ps for the larger coupling
of χ=62 pN, and up to about 0.12-0.14 ps for a smaller cou-
pling constant of χ=35 pN. The calculation of higher orders
becomes very tedious and is for this reason not feasible. In
the case of a decoupled oscillator system a third order wave
function yields reasonable expectation values for about
0.6-0.8 ps. However, for our expansion of the exact wave
function in the general case, which is the subject of the fol-
lowing paper, we have to restrict the study of its short time
behaviour to the smaller one of the two time scales. Only in
this case we can be confident that expectation values com-
puted with a third order expansion are reasonable. More im-
portant, we have seen that the accuracy of S(t) and H(t) (con-
stant in time for exact solutions and initial values known)
parallels completely that of the other, physically more inter-
esting expectation values for a given expansion in both sys-

tems studied. Thus S(t) and H(t) are indicators for the time
up to which an expansion yields reliable results. In any case,
one has to conclude that expansions of the kind used here are
not useful for the investigation of long time dynamics, since
to this end very large orders would be required, which are
prohibitively tedious to compute. Therefore one cannot get
rid in this way of the requirement to use ansatz states for
such purposes.

Further we found that, although the |D
1
> ansatz state con-

tains site dependent coherent state amplitudes, the initial state
has to be constructed in form of a |D

2
> wave function, i.e.

with site independent amplitudes, from the initial set of lat-
tice displacements and momenta. Otherwise in case of the
decoupled limit |D

1
> dynamics would not lead to the exact

solution. Further, the known requirements for computation
of correct amplitudes b

nk
 from a given set of displacements

and momenta do not lead to a unique set of b
nk

’s and only the
use of site independent b

k
’s yields consistent values of the

lattice energy.
In conlusion, the present work lead to the foundations for

a thorough investigation of the very small time behaviour of
|D

1
> dynamics (or generally for all ansatz states) in compari-

son to the exact wave function, which is the subject of the
following paper.
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Appendix A: Treatment of the Small Polaron Limit Using the |D
1
> Ansatz

The Hamiltonian$Hspin this case and the |D
1
> ansatz are given by

( )$ $ $ $ $ $ $ $H B b b a a b bSP k nk k k n n
nk

k k k
k

≡ = + ++ + +∑ ∑ω ω ωh h

( )D a t an n
n

e n1 0= +∑ $ β
(A1)

( ) ( )βn nk
k

nk k
k

p
b t b t b= −













⋅










∑ ∑ +exp exp $1

2

2
0

First of all we have to show that our ansatz satisfies the Schrödinger equation for the Hamiltonian given in (A1). The left hand
side of the equation is readily calculated and yields

( )i D i b b b b b a a a
t nk nk k nk nk

k
n n

n
n n e

h h
∂
∂ β1

1
2

1
2

0= − − +





+











+ +∑∑ & $ & & $* *

(A2)

To eliminate the time derivatives in (A2) we need the equations of motion for the |D1> ansatz under the condition J=0. From
equ. (17) in the main text follows

( ) ( )i a
i

b b b b a B b b b an nk nk nk nk n
k

k nk nk nk nk n
k

h
h

h& & &* * *= − − + + +



∑ ∑2

2ω
(A3)

( )i b b Bnk k nk nkh h& = +ω (A4)

Substitution of (A4) into (A3) yields

( )i a B b b an k nk nk nk
k

nh h& *= +∑1
2

ω
(A5)

The use of (A5) together with (A4) leads to the final form of (A2)

( )[ ]i D B b b B b a a
t k nk nk nk nk k

nk
n n n e

h h
∂
∂ ω β1 0= + + + +∑ $ $

(A6)

With the help of the eigenvalue equation for coherent states

$b bk n nk nβ β= (A7)

we obtain (A8) for the different terms on the right hand side of the Schrödinger equation and comparison with (A6) shows that
the equation is fulfilled, and thus |D

1
> together with the equations of motion (A4) and (A5) is the exact solution for the small

polaron limit:

( )
[ ]

$ $ $ $ $ $ $ $

$ $ $

ω ω ω β

ω β ∂
∂

D B b b a a b b a a

B b B b b b a a i D

k mk k k m m
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k k k
kn

n n n e

k nk k nk nk nk k
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n n n e t

1

1

0

0

= + +












=

= + + =

+ + + +

+ + +

∑ ∑∑

∑

h h

h h
(A8)

The explicit form of this solution is obtained by direct integration of (A4):

( )

( )
db

b B
i dtnk

nk nkb

b t

k

t

nk

nk
'

'
'

+
= −∫ ∫

0 0

ω (A9)
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and thus

( ) ( ) ( )b t b e B enk nk
i t

nk
i tk k= + −− −0 1ω ω

(A10)

Further, together with (A10), we can integrate (A5)

( )

( )
( ) ( )[ ]i

da

a
B b t b t dtn

na

a t

k nk nk nk

t

k
n

n

h h
'

'
' ' '*

0

1
2

0
∫ ∫∑= +ω (A11)

which yields the general solution for the transportless case

( ) ( )[ ] ( )D b t b b t b a t ank k nk k
k

n n
n

1 0= −











+ +∑∑exp $ $ $*

(A12)

( ) ( ) ( )[ ] ( )[ ] ( ) ( )[ ] ( )[ ]{ }a t a i B t t i B b t b tn n nk k k
k

nk nk k nk k
k

= ⋅ − −











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
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


∑ ∑0 0 0 12exp sin exp Re sin Im cosω ω ω ω

( ) ( ) ( )b t b e B enk nk
i t

nk
i tk k= + −− −0 1ω ω

where Re[x] (Im[x]) denotes the real (imaginary) part of a complex number x. For later considerations we need also the special
case, that we start from an undistorted lattice and an excitation localized at one site o, i. e. b

nk
(0)=0 and a

n
(0)=δ

no
:

( )
( )[ ]

( ) ( )a t e b t B en

i B t t

no nk nk
i t

ok k k
k k= = −

− −
−

∑ 2

1
sin

;
ω ω

ωδ (A13)

with the total state vector

( )[ ] ( ) ( )[ ]

( ) ( )
ω

ω ω

ω

= ⋅

= −

− − −
+
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e e a
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$

(A14)

For the computation of expectation values we concentrate first on the same case as Brown et al. [14], namely an undistorted
lattice b

nk
(0)=0, but an arbitrary excitation a

n
(0). Then the lattice energy is given by

E D b b D a blat k k k
k

k n nk
nk

= =+∑ ∑h hω ω1 1
2 2$ $

(A15)

With the help of

( ) ( ) ( ) ( )[ ]a t a P b t B tn n nn nk nk k
2 2 2 20 2 1= ≡ = −; cosω (A16)

we obtain

( )[ ]E B P tlat
nk

k nk nn k= −∑2 12
hω ωcos

(A17)

which is identical to the exact result given by Brown et al. (Ref. [14], second paper). The exciton-lattice interaction energy is

( ) [ ] ( )[ ]E B D b b a a D B b a B P t Ek nk k k n n
nk

k nk nk n
nk

k nk nn k
nk

latint
$ $ $ $ Re cos= + = = − = −+ +∑ ∑ ∑h h hω ω ω ω1 1

2 22 2 1 (A18)
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Therefore, as to be expected, the total energy is conserved and vanishes in this case. The expectation values of the phonon
operators are

( )B D b D a b P B e B D b Dk k n nk nn nk
i t

nn
k k

k
1 1

2
1 11$ ; $*= = − =− +∑∑ ω

(A19)

From this we obtain the displacements as

( ) [ ] ( )[ ]q t
M

U B
M

P U B tn
k

nk k
k k

mm nk mk k
mk

= = −∑ ∑2 2
1

h h

ω ω
ωRe cos

(A20)

where matrixU contains the normal mode coefficients (see Appendix B for details). This is again identical to the exact quan-

tity given by Brown et al. Finally the momenta are given by

( ) [ ] ( )p t M U B M P U B tn k nk k
k

k mm nk mk k
mk

= = −∑ ∑2 2h hω ω ωIm sin
(A21)

For the general case we have

( ) ( )[ ] ( )[ ] ( )[ ]E b B t B x t y t Plat k nk nk k nk nk k nk k
nk

nn= + − + − −


⋅∑ hω ω ω ω0 2 1 2 1
2 2 cos cos sin

( )[ ] ( ) ( )[ ]{ }E B t B x t y t Pk nk k nk nk k nk k
nk

nnint cos cos sin= − + + ⋅∑ hω ω ω ω2 1 22
(A22)

where the abbreviations x
nk

=Re[b
nk

(0)] and y
nk

=Im[b
nk

(0)] were used. Finally the conserved total energy E
tot

=E
lat

+E
int

 is given
by

( ) ( ) ( )[ ]E D D b B b b Ptot k nk nk nk nk
nk

nn= = + +


⋅∑1 1
2

0 0 0$ *ω ωh (A23)

Appendix B: Normal Mode Coefficients for the Lattice

The solution of the classical normal mode problem for a cyclic chain of oscillators leads to the problem of diagonalization of

a matrix V :

( ) ( ){ }

&& && && ; ' '

, ,

q V q U q U V U U q U q U q

V
W

M

kk k kk

nm nm nN m n n m n n mN nN m

= − ⇒ = − ⇒ = − ≡

= − − − − − −

+ + + + +

+ −

ω ω ω δ

δ δ δ δ δ δ δ δ δ

2 2 2

1 1 1 1 12 1 1
(B1)

For this purpose we split the matrix in the form

( )
( ) ( )

V
W

M
X

Xnm nN m n n m n n mN nN m

= ⋅ −

= − + − + ++ −

2 1

1 11 1 1 1 1δ δ δ δ δ δ δ δ, ,
(B2)
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Instead of the eigenvalue problem Vu uk k k= ω2 we solve the related problem Xu uk k k= λ . The relation is, that both matrices

have the same eigenvectors and the relation of the eigenvalues is

( ) ( ) ( )Vu
W

M
X u

W

M
u

W

M
u

W

M
u

W

Mk k k k k k k k k= ⋅ − = − = − ⇒ = −2 1 2 2 22λ λ ω λ (B3)

Since X is a reducible representation of the rotation group C
N
 we can write down its eigenvector matrix U without further

calculation:

( )U u u u U
N

e U U U U U U

U U U U

N nk

i

N
nk

nk N k nk n N k n N k nk

nk n k nn
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∑ ∑
1 2
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1
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;

, , ,
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'
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'
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' '

π

δ δ
(B4)

Since in our cyclic system, the choice of the numbering is arbitrary, we assume n and k to run from 1 to N. The eigenvalues are
obtained by explicitely performing the matrix product

( )U XU
kk

k kk
+ =

'
'λ δ (B5)

using the relation

( )
δ

π

kk

i

N
n k k

n

N

N
e'

'
=

−

=
∑1

2

1
(B6)

From this calculation the eigenvalues of X and V are found to be

λ π ω π
k kN

k
W

M N
k= ⋅ 



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= − 
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
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







2

2
2 1

22cos ; cos (B7)

Using 1-cos(2α)=2sin2(α) we obtain

ω
π

k
W

M N
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



2 sin (B8)

Obviously with exception of k=N each eigenvalue is doubly degenerate (we concentrate here and in the rest of the paper on
odd numbers N), namely ω

k
=ω

N-k
, which is easily shown, using the trigonometric relation sin(α−β)=sin(α)cos(β)-cos(α)sin(β).

Therefore, any linear combination of the two eigenvectors belonging to the eigenvalues ω
k
 and ω

N-k
 yields also eigenvectors of

V . Thus from the set of degenerate eigenvectors, we can form a new set of real and orthonormal eigenvectors by

( ) ( )ϕ
π

nk nk n N kU U
N N

nk
1 1

2

2 2
= + = ⋅ 



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(B9)

( ) ( )ϕ π
nk nk n N k
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N N
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1
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2

= − − = ⋅ 





= −

−, sin

,... ,
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Since the new eigenvectors belong still to degenerate eigenvalues, we can form again another set of orthonormal eigenvectors
by the linear combination:

( ) ( ) ( )ψ ϕ ϕnk nk nk
1 2 1 21

2

, = ±



 (B10)

leading to

( ) ( ) ( )
cos sin cos cosα α α

π
ψ

π π
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
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2
4
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and

( ) ( ) ( )
cos sin cos cosα α α

π
ψ

π π
− = +





⇒ = +



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2
4

2 2

4

2
nk N N

nk (B11b)

where k runs again from 1 to (N-1 )/2. To get rid of the unpleasent fact of having two functions for one k, we use in the second
function (B11b) the index k’=N-k instead of k, but with k’ running from [(N-1)/2+1] to (N-1). After performing this substitu-
tion and using the relation cos(α+β)=cosαcosβ-sinαsinβ with α=2πn we arrive at

( )

( ) ( )

ψ π π

ψ π π

nk

nk

N N
nk k
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N N
nk k
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−
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(B12)

Since ( )[ ]cos 2 4 1 2π πn− = we have now our final set of real eigenvalues and we substitute it for the eigenvector matrixU :

ω π

π π

k

nk

W

M N
k

U
N N

nk k N N

U U U U

= ⋅ 

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sin
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(B13)

This form of the normal mode coefficients can also be used to develop an ab inito Hartree-Fock Crystal Orbital formalism
based on real numbers only. However, in this case it does not lead to a complete block-diagonalization, because it leaves the
pairwise degenerate sets unresolved [33].

Appendix C: Analytical Solution of the Oscillator System in the Decoupled Case

The Hamiltonian for the oscillator system in the decoupled (χ=0) case reads as

( )$ $ $ $ $J J a a a an n n n
n

= − ++
+ +

+∑ 1 1 (C1)

With the ansatz

( )ψ e n n e
n

a t a= +∑ $ 0
(C2)
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the Schrödinger equation can be exactly solved and is transformed to

− =
i

J
a Xa

h
& (C3)

where X is the same matrix as defined in Appendix B, equ. (B2). Therefore we have again the same eigenvector matrix Rand

eigenvalues λ
k
:

λ π
π

k nk

i

N
nk

N
k R

N
e k N= 
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
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= =2
2 1

1

2

cos ; ; ,... , (C4)

However, here we keep its complex form and name it R. Then with the transformationR a c+ =  our equation becomes

− = =i

J
c c kk k kk

h
& ; ' 'λ λ λ δ (C5)

which is simple to integrate:
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h
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(C6)

The backtransformation is simply done by multiplying the result for c(t) from the left with R  and replacing c(0) by ( )R a+ 0 :

( ) ( ) ( )a t Rc t R e R a e e
i
J

t i
J
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kk
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or without matrix notation:
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Thus the total wave function is given by

( ) ( )ψ
π π
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n n e
k

N

n n

N

N
e e a a= ⋅ ⋅

−




 +

==
∑∑1

0 0

2 2
2

11

' cos

'
, '

$
h

(C9)

The expectation values N
n
 of the number operators â

n
+â

n
 are given by
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For calculation of the norm of the state we have to sum N
n
 over n. Then the first exponential can be summed over n and yields

together with the factor 1/N the Kronecker symbol δ
kk’

. When the sum over k’ is performed the time dependent exponent
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vanishes. Then the summation over k can be performed, leading together with the second factor 1/N to δ
n’n’’

. Thus the norm is
conserved and equals the norm of the initial state.
The total energy is given by

( ) ( ) ( ) ( )( ) ( ) ( )[ ] ( ) ( )[ ]E J a t a t a t a t J a t a t J a atot n n n n
n

n n
n

n n
n

= − + = − = −+ + + +∑ ∑ ∑* * * *Re Re1 1 1 12 2 0 0
(C11)

where the last equality is obtained with the help of the same summation procedure as above, with the only difference that
instead of δn’n’’  in this case a factor δn’’,n’+1 is obtained.
     For later use we want to give finally the wave function coefficients for the special case of an initial excitation localized at
just one site o, i.e. an(0)=δon:

( )
J
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In this case the total energy vanishes and Nn is given by
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Appendix D: The Relevant Expectation Values for the Phonon System in the Small Polaron Limit

First of all we compute the norm of the states in different order. In 0th order we have simply S(0,t)=1, and in 1st order

( ) ( )S t B tok k
k

1 1
2

, = + ∑ ω
(D1)

Then in 2nd order we obtain
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In this way we simplify all expectation values to the corresponding one of the preceding order and a series of expectation
values between the |ψµ>. Further we calculate S(3,t) to
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(D3)

For calculation of the expectation values of the Hamiltonian we split the expression into two terms leading to

( ) ( ) ( ) ( )[ ]H t t b b t B B tk k k
k

k ok k
k

µ ω ψ µ ψ µ ω µ, , $ $ , Re ,= ++∑ ∑h h2
(D4)
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This leads to H(0,t)=0 and further to
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Further we give the expectation values of the phonon annihilation operators, where Bk(0,t)=0:
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Finally note, that

( ) ( ) ( )B t t b tk k
* , , $ ,µ ψ µ ψ µ= +

(D7)

holds.
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Appendix E: Separation of the Phase Factor of the Exact Solution

We have found that the operators $D and $H  commute [see equ.(4)]. Further we know that the initial single exciton state must

be of the form

( ) ( ) ( )Φ 0 0 0 0= +∑ $ $B a an n n
n

(E1)

where the operator ( )$Bn 0 creates the initial set of displacements and momenta from the phonon vacuum. Thus ( )$Bn 0 can

contain only complex scalars and phonon operators. Then

( ) ( ) ( )e
T
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itTD
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= ≡ −





+

=

∞

∑
ν

ν

ν
ν h (E2)

holds. Since
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we have
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and therefore
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=
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Finally we obtain

( ) ( ) ( ) ( ) ( )Φ Φ Φ Φt e t e e e e
T H D TH TD
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k= = =
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0

1
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which is the same separation as discussed in the main text.
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