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Abstract

For the Davydov Hamiltonian several special cases are known which can be solved analytically. Starting from
these cases we show that the initial state for a simulation using Davydgv'agroximation has to be con-
structed from a given set of initial lattice displacements and momenta in form of a coherent state with its
amplitudes independent of the lattices site, corresponding to Davydgy'sgpproximation. In the |B ansatz

the coherent state amplitudes are site dependent. The site dependences evolve from this initial state exclusively
via the equations of motion. Starting thg>Bimulation from an ansatz with site dependent coherent state
amplitudes leads to an evolution which is different from the analytical solutions for the special cases. Further we
show that simple construction of such initial states from the expressions for displacements and momenta as
functions of the amplitudes leads to results which are inconsistent with the expressions for the lattice energy.
The site-dependence of coherent state amplitudes can only evolve through the exciton-phonon interactions and
cannot be introduced already in the initial state. Thus also in applications of thenfatz to polyacetylene

always |D> type initial states have to be used in contrast to our previous suggestion [W. BOReYS.:

Condens. Mattel994 6, 9089-9151, on p. 9105]. Further we expand the known exact solutions in Taylor
serieses in time and compare expectation values in different orders with the exact results. We find that for an
approximation up to third order in time (for the wave function) norm and total energy, as well as displacements
and momenta are reasonably correct for a time up to 0.12-0.14 ps, depending somewhat on the coupling strengh
for the transportless case. For the oscillator system in the decoupled case the norm is correct up to 0.6-0.8 ps,
while the expectation values of the number operators for different sites are reasonably correct up to roughly 0.6
ps, when calculated from the third order wave function. The most important result for the purpose to use such
expansions for controlling the validity of ansatz states is, however, that the accuracy of S(t) and H(t) (constant in
time, exact values known in all cases) is obviously a general indicator for the time region in which a given
expansion yields reliable values also for the other, physically more interesting expectation values.
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Introduction excitation over the chain. If the dispersive and the nonlinear
forces are balancing each other, the excitation will remain
The most recent and best review of the state of art in Davyddecalized on a small number of sites at each time due to the
soliton theory was given by Scott [1], the leading expert innonlinearity, and the whole system of amide-| excitation to-
the field. The problem which Davydov [2-5] attempted to gether with its stabilizing lattice distortion can move through
solve with his mechanism was the storage and transport dhe system due to dispersion. In other words a solitary wave
energy through protein chains. The energy which is to ber a soliton could be formed. However, up to now such solitons
transported or stored in biological systems is released by theave not been observed directly in proteins. Only in
hydrolysis of adenosinetriphosphate (ATP) molecules whichacetanilide (ACN) which forms single crystals and contains
amounts to about 0.4 eV (see [2-5] and [1] for further detaildhiydrogen bonded chains of C=0 groups as in proteins, pinned
and references). In Davydov’s opinion the best candidate fosolitons (which do not move) of the Davydov-type could be
storing this energy in proteins is the amide-I vibration, whichobserved spectroscopically by Careri's group (see again
is essentially of C=0 stretch type, because one quantum @&cott’s review [1] for a detailed discussion). Since proteins
this vibration has an energy of 0.205 eV, roughly half of theare aperiodic and do not form single crystals an observation
energy released by ATP hydrolysis. From this starting poinbf Davydov solitons, if present there, is more or less impos-
Davydov developed his physical model for the energy transsible up to now. Even accurate measurements of the con-
port. In a—helical proteins the C=0 groups of a turn in the stants appearing in the model is not possible. Therefore it is
helix form hydrogen bonds to the N-H groups in the follow- very important to study the dynamics in the Davydov model
ing turn. As indicated in the following sketch (see section Il)theoretically as a function of the parameter values, the de-
these hydrogen bonds form chains parallel to the helix axigree of disorder and temperature to be able to obtain infor-
and perpendicular to the covalent backbone. There are atnation whether the formation of solitons is possible at all for
ways three parallel chains of this kind in@#shelix. Within reasonable windows in the parameter space or not. Especially
such a chain the C=0 oscillators are coupled via their transit is of utmost importance to obtain approximate solutions of
tion dipole moment with each other, where next neighbotthe Schrédinger equation for the Davydov Hamiltonian as
coupling is by far the most important term. This type of cou-close as possible to the unknown exact solutions. This work
pling is a linear one and makes the system dispersive, i.e. ateals with the latter problem and especially the ansatz states
amide-| vibrational quantum at a site would not remain lo-proposed by Davydov for this purpose are investigated. Fur-
calized, but would be distributed over the complete chairther we propose a propagation scheme in the conlusion, be-
within a few picoseconds (ps). cause in that way the inclusion of temperature effects into
As next step Davydov considered the fact that the chaitthe theory is more straightforward than in the case of an ansatz
of coupled hydrogen bonds forms a phonon system with theeatment.
peptide units vibrating against each other in the potential These basic concepts of the Davydov soliton mechanism
due to the hydrogen bonds. These hydrogen bonds are dpr energy transport in proteins [2-5], as well as the different
proximated by a harmonic potential. Since the excitatiomattempts to include the effects of finite temperature into the
energy of the amide-I oscillators is naturally dependent omimodel [4-13] and the controversy about thermal stability of
the length of the hydrogen bond in which the C=0 groupprotein solitons is discussed in the introduction of Ref. [6].
takes part, the system of amide-I oscillators is coupled to th&herefore we do not want to elaborate on these points here.
acoustic phonon system of the hydrogen bonded chain (th&he extensive discussion on the validity of the different ansatz
so-called lattice). Considering a linear dependence of thetates used in the literature [14-23] is also reviewed there
amide-| excitation energy on the length of the hydrogen bond6]. The ideas on which the Davydov mechanism is based
the coupling constant can be estimated experimentally. Atare nowadays extended also to other systems in more or less
tempts for the theoretical determination of this constant failegimilar ways. Davydov himself e.g. used a bisoliton concept
(leading mostly even to values with the wrong sign) due tdo explain high-T superconductivity in materials containing
the use of too small atomic basis sets and the lack of elecopperoxide, and a Hamiltonian similar to that for the de-
tronic correlation in the ab inito Hartree-Fock calculationsscription of energy transport in proteins for the explanation
performed so far (see [1] for a discussion and referencespf electron transport (electrosoliton) which is important in
However, the experimental estimates place its value betwedniological redox processes where proteins serve as
35 and 62 pN. catalysators. A wide variety of applications of these ideas is
From these considerations Davydov constructed his modebllected and dicussed again by Scott in his review [1].
Hamiltonian which contains just that details of the protein In a series of papers we dealt mainly with ansatz states
a—helix which are the most important ones (constructive andvhich include quantum effects in the lattice into the descrip-
destructive) involved in the transport and storage of energyion and with the inclusion of effects of finite temperature
via amide-l vibrations. The Hamiltonian is given in more into these theories [6,20, 24-27]. Since already at OK the
details in section Il. Due to the coupling of the dispersive|D,> ansatz is still an approximation, one would like to have
amide-| system to the lattice, the nonlinear forces occurring numerical estimate of the errors introduced by this approxi-
can prevent the distribution of an initially localized amide-I mate ansatz. Therefore, we presented in Ref. [27] expecta-
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tion values of several operators in the siatewhich repre-  cussed. Specifically we will present vibrational spectra which
sents the error of the |B state if it is substituted into the can be computed directly from simulations obtained with

time dependent Schrddinger equation: states of |D> type. Since the Davydov mechanism was intro-
_ n _ duced to explain energy storage and transport in proteins,
['h(a/at _HD)]|D1> ‘J|5> . first of all the question of the existence of such solitons in

J is one of the parameters in the Hamiltonian (see bemwp_roteins is of utmost important. Our third paper will also
For an exact solution3=0 would be required. We com- deal with this problem. We want to present simulations in-

pared these expectation values with the corresponding on&¥ding temperature effects, and a detailed study on the ini-
tial states, from which solitons are formed. Then we need to

in the state(HD /3) D1) to get a numerical estimate of the explain, why in infrared and Raman spectra of polypeptides
no signs of solitons in the amide-I region are found, although
afﬁeoretically they exist. Further, our model after some exten-
sions can be used to study also coupling of the amide-II vi-
Bration (where the N-H bonds are stretched) to optical and
A Ycoustical lattice phonons. The reason, why such features
(HD/J)| D1> state are negligible. Since the set of basis state§hould be included also is, that experimentally unusual fea-
o . i tures in the spectra of polypeptides in the amide-Il region
is incomplete when using the fansatz, this does not en- yere found, and still lack an explanation (see [34] for a short
sure a good quality of the [® approximation, however, it reyiew and further references). It is also of importance to
could be expected, that the lack of basis states, if importang, |y the model to acetanilide (in modified form, since there
should lead to larger errors also within the pa5|s space actyre c=0 stretching vibration is coupled to optical phonons),
ally employed, than those we found numerically. because in this case at low temperature the normal amide-I
Since we are extending at present the application,af |D pang vanishes and a new solitonic band appears in the Raman
type ansatz states also to the polyacetylene case [28] it SeeQfectra (see [1] for discussion and references). Thus the
to be desirable to obtain some more detailed informations 0§¢etanilide case could give additional insight, up to what

the limitations of this ansatz. For this purpose we want tQyient the Davydov model is able to explain measured spec-
expand the exact solutid@) - exr{—iH Dt/h]| ‘Do> for the tra, especially as function of temperature.

errors occurring. For the sake of comparison the same w
done also for the semiclassical so-calleg>|Bnsatz [2]. In

this study we found that the errors introduced in these expe
tation values compared to those in the correspondin

Davydov Hamlltoman(HD), where ¢ > is the initial state, Davydov’s Hamiltonian and the |D> Approximation

in a Taylor series in time and compare the results with those
from a |D> simulation. Attempts into this direction have been The Hamiltonian, as well as the form of the3@pproxima-
reported previously by Cruzeiro-Hansson, Christiansen antion have been discussed extensively in the literature. How-
Scott [29]. However, they restricted their considerations to aver, for the purpose of clearcut definitions in the following,
dimer and found that second order terms can be neglectede repeat the basic formulas here. The Davydov Hamiltonian
only for times much smaller than 0.1 ps. Further they give ndor our problem [2] reads as
comparisons to approximate simulations and for the case of
N sites they give a system of equations, but they draw ncﬂD = Z [an;an - J(Aq’; At Aéf'HAaﬂ)
numerical conclusions from it. n

In order to be able to work numerically with such an ex- 52 ) N2 e g 0
pansion, we need informations on the time scales in whichtyr +%(qn+1 - Qn) *tXan an( One1 — AQn)E
the different orders are correct. For this purpose we study in
the present paper the performance of such expansions for
analytically kn'own' solutions' for some special cases of the |, equ. (1) & (8) are the usual boson creation (annihila-
Davydov Hamiltonian. We give the analytical solutions andijony operators [4] for the amide-I oscillators at sites n (see
their expansions in Taylor serieses in time. Then we coMgyetch at the top of the following page).
pare norms, total energies, displacements, momenta and €X- grom infrared spectra the ground state energy of an iso-
pecta?ion.values of the number operators for the wave funGxieq amide-1 oscillator can be deducegH(E205 eV). Usu-
thﬂS. in different orders with those obtalned from the exacta"y for all parameters in equ. (1) site-independent mean val-
solutions. Further we draw some conclusions on the form ofies are used. The average value for the coupling of the tran-
initial states, necessary for reliablgt[simulations for these  gjiion dipole moments of neighboring amide-1 oscillators is
special cases. In the following paper Mol. Model, ac- 320,967 meV. The average spring constant of the hydrogen
cepted) we will discuss the results for the complete Davydoygngs s taken usually to be W=13 N/m, as measured in crys-
Hamiltonian, based on the results of this work. talline formamide. p/is the momentum and gthe position

Finally in the third paper of this series we will present gperator of unit n. The mass M of a peptide unit is taken as
applications of dynamics, obtained with the methods diSine mean value of the masses of the units in myosine

@)
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The form of Vimplies that we use cyclic boundary condi-
Main Polypeptide Chain tions and N units.

M\\L First of all we rewrite our Hamiltonian into the form
|:|D = |:| a:]- +1 hwk = H+ D ;
2 1
LTI

A A (4)
\ K \ [H, D] =0
C—O0 -H— C—o0O- -
/ / For the exact solution the time dependent Schrédinger equa-
n-1 n n+1 tion holds:
|os> =
Helix Axis 3¢ |q> =H D|qJ g )
Now we factorize our exact wave function as
(M=114m; m_is the proton mass). The energy of the col®> = exp[—%D] |lIJ >, D=EEy+3 Zhwk ©6)

stretching vibration in hydrogen bonds is a function of the
length r of the hydrogen bond (Ezr). For X the experi-  Then we obtain (D is a time independent real scalar)
mental estimates are between 35 pN and 62 pN. Ab initio _ . A
calculations on formamide dimers usually leadxt80-50 Hpl®> = exp{—% D] [(D|l|J > +H|qJ >)
pN, however, with small basis set ab initio calculations even _
negative values fo{ were obtained (see e.g. [1] for a review ih%lql' >=D EEXF[—%D]NJ >+ ex;[>— D] -2 |llJ >
and references).
The one-particle Hamiltonian [2,3], where one-patrticle
refers to the quanta of the amide-I vibration, in seconawe know that the exact wave function can be written in the

quantized form is given by form

W)= S exf&,(0] ()10

- At a At A At 8
HfZ%oaﬁan-(*laﬁaim)% n ®
n where &(t) is a complex scalar and |0> the vacuum state. Itis
+z hooy EHS; b +%+ Z Bnk A +|-( o, a’é known that the generatéﬁ(t)contains only phonon opera-
K H n 2) tors and complex scalars (see [16] for details). Therefore we
can write

:Lk '—ZM:I?;l(ok [Un+1,k_Unk]
|o) = ex{- D]cg > e $(0]a(Yavandio

b" " (b%) are creation (annihilation) operators for acoustic

phonons of wave number k. The translational mode has to be +1% hw |lIJ>D

excluded from all summations. Note that in the simulations 2 z k

presented we use again the asymmetric interaction model

where only the coupling of the oscillator n to the hydrogen (9)
bond between n and n+1 in which the oscillator takes part is

consideredw, denotes the eigenfrequency of the normal mode&maman|0) = am(é nmt Aa+nAar)] 0

k andU contains the normal mode coefficiertsandU are 0 D| ®) =D Eéxr[—% D]| W)

obtained by diagonalization of the matiwith elements
Vim = 2280 = (1-8 )0 m w1 (18 0)8 mar-
~BraBimn =8 b ra) ; in & | o) = exp[ it D] [(D +in )[]]q;)
) HD|¢>:exp[—%D]E(D+H)[|JqJ>

Together with equ. (7) this leads to

(10)
vy, mebou v
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and therefore from

. O 0
ih%|®>: Hp|®) = %OZ ata, +%Zhwk + H@GJ)
n k

(11a)
follows
O 0 L l
|(I)> = expﬂ-% 0 +§Zh(})k|:l:q]l.|.l> (1lb)
§ S
where > has to obey the Schrdédinger equation
. a _ ~
in2ly)= Hlw) (12)
with the simplified Hamiltonian
A== (Bt + 8 B+
n
0 . R O
+ heoy byt By + Y B Bict bT()AaJ'nAarE (13)
k H n
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Uj0), =

zbka) Q:ewérz (O o>p
- pgz D (0B - bL(t)bK§0>p

k

(16)

The b, (t) and the [t), respectively, are the coherent state
amplitudes and |@)] is the probability to find an amide-|
guantum at site n. These are the quantities which have to be
determined.

The equations of motion for these quantities can be ob-
tained with the Euler-Lagrange equations of the second kind
(see [6,17,20,24-27]). Note, that with the Hamiltonian method
as used previously by Davydov and others incorrect equa-
tions are obtained in case of the3Btate [17]. The final
equations of motion for the |B ansatz are

iha, = _i7h Z (bnkb;k_ b*nkbnk) &t
k

- hoo[B b+ by +| b 2]aﬁ+
Z k nk( nk nk) | nll (17a)

A more simple form of this proof is given in Appendix E.
Note, that the zero-point energies in the exponential prefactors
are present, whether the coupling between amide-I oscilla-
tors and the phonons exists or not, since alsg=@ holds,
the lattice is still present in the Hamiltonian. Thus a remark
of Kapor [30] on this topic does not apply. The>@nsatz
for > has the form

|D1> = Z an(t)onanl(» (14)

_J(Dn,n+1an+1 + Dpn-18n 1)

i = 1o (b + By - JEDm+1(bﬂl, K bnb a;+1 +

n

a,_ 0
n1|:|
an O

+Dn,n—1(bn—1,k - bnk)
where the coherent state operators are given by where the coherent state overlaps are given by

O

0
n|O exﬂé—% Z |bnk(t)| D]exr? by ()b %0

= engz [bnk(t)f); - b;k(t)Abk]gc»p
K B

O
exyﬂ-%qunk bmll + Dl mic B b m
H %
(17b)

Mechtly and Shaw [16] have shown, that for initial con-
(15)  ditions a(0)=3 , and b (0)=0 the small time behaviour of
the system is given by
Note, that the second equality holds only if the operator
acts on the phonon vacuum Jpand that in our notation J MEP t""
|0>:|0>e|0>p, where |0>is the vacuum state for the amide-I hZWD (n _1) _
oscillators (exciton vacuum). A simpler form of this ansatz
is the |D> state which is a product state:

|D2> = Z an (t)Aaf-:|O>eU| 0> p

n()—’ @'

(18a)

e Dy
bnk(t) -~ ?kaQkDE
=] =
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Initial States
ATOW
Wik = V2 odm+3)d 5 Q= K _ _ |
i =2 k( 2) < (N+2a In this subchapter we want to discuss the question of the
5 correctness of the |B state in the decouple®<0) and in
4o = X M| a= h W the transportless (or small polaron) case (J=0). Especially it
Toaw\w T T 23U M is interesting to investigate whether or not this poses restric-

tions on the form of the initial state. This is an important
problem, since for the initial state (time t=0) we have the

where in their case the eigenfrequencies are physical situation that a set of coefficients for the amide-I
_2edkal - T .o oscillators in the wave function, {@®)}, and a set of
Wk asm[ 2] K=t ¢+ 1712.N (18b)  displacements and momenta(@,p,(0)} is given. The ques-

Thus two factors in one of the terms in equ. (17a) wheréion is now, how to compute coherent state amplitudes from
these sets of initial values.

a (t) occurs in the denominator have for small t the behav-

iour .
The Small Polaron Limit

lim ——= ~ —— = — First we want to discuss the transportless case, also called
the small polaron limit (J=0). Since here we have an excita-
(18c)  tion which is not transported along the chain, but deforms
"mo[bn—J,k(t)‘ bnk(t)] ~t the 'Iatt'lce,. it can pe ca!lgd a polaron and further if the initial
t- excitation is localized, it is called a small polaron. Brown et
al. stated in 1986 (Ref. [14], second paper) that with |D
Sc,h{namics incorrect values for the displacements and conse-
quently also for the phonon energy are obtained. This result
is due to the use of the Hamiltonian method introduced by
i an+1(t) B t" Davydov [2,3] which yields incorrect equations of motion in
o a () L =t (18d)  the |D> case [17]. In his paper from 1988 (Ref. [14], last
paper), Brown concluded that tbsatisfies the Schrodinger
) ) o equation in the small polaron limit, but derives no equations
and vamshes Whgzn t approaches zero. 'T.hus'm principle thg motion. Again in 1988 ( Ref. [14], third paper) Brown et
denominators &) in equ. (17a) pose no difficulties, although 4 stated that an ansatz treatment yields correct displacements
if they vanish for t approaching zero. However, in [16] it iS 1y ;¢ incorrect phonon ergies. This statement was based on
reported that instabilities are encountered when the short timg,o ID> ansatz, where it is certainly correct, however, since
solutions are incorporated into a program. To avoid suchy, direct reference to |b was made there, it could lead to
problems we follow the suggestion given in [16] and @ll & {he impression, that any ansatz treatment would be plagued
which vanish in the.|n|t'|al .s.tate are put {(0=x, where x is by the same problem, what is not the case. To avoid any
a small, physwglly insignificant number, e.g. x=0.005 [16]. misunderstandings, we give in Appendix A a complete deri-
The equations for the D state, transformed from the y41ion of the exact solution for the small polaron limit which

and therefore the product of both approaches a constant a;
approaches zero. The other term has the behaviour

normal mode to the coordinate representation, are is a |O> state, together with the expressions for the relevant
e _ expectation values.
ihdn = =3(ans1 + 1) + X(anes ~ &) & Assuming now a set of initial conditions for the lattice
By = W( Gt — 205 + qH)Jr)((| q{]|2 | qH|2) {d,(0),p,(0)}, then the lattice energy is clearly given by
(19) Fw 2, PA(OE
. E4(0) = 0)-qgn(0)|” +
An :% iat (0) Z%E[Qnﬂ( ) = an( )] M % (20)

The numerical solution of all these equa’[ions can be ac- Let us construct now from these initial conditions a set
complished with the help of a fourth order Runge-Kutta{b,(0)} of coherent state amplitudes following the sugges-
method. Note, that the lattice parts of equ. (19) are not erfion given by us in [28]:
tirely classical as their form might suggest, but tfie and 2
p,’s have to be viewed as expectation values of the correPn :|an(0)| (21)
sponding quantum mechanical operators rather than as clas-

sical variables. However, the [Pstate is the exact solution _ 1 [Mwyg [ 1
D bnk(o)_P_\} > UnkOIn(O)+P— Wunkpn(o)
nn nn 00

foerif the operators of the displacements and momenta

are replaced by real numbers(ty and p(t), respec-
tively [31,32].
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which clearly gives the correct displacements and momenta 1

pack, and thgs Igao!s alsq to a correct exciton-lattice mteraq-m[bnk(o)] = Z Un|kpr,(0)

tion term, which is linear in the phonon operators. However, - | 2MAwy

substitution into that part of equ. (A23) which represents the

energy of the decoupled lattice as derivedAppendix A

leads to With this choice we obtain again the correct values for
q,(0) and p(0) back and thus also the correct exciton lattice
1 aﬂ ) ) pZ(O) ) 0 interaction. Further, this ansatz yields also the correct lattice

Ep =y — UwiU 0)+— VEAR energy:

lat Z Pnn Hz Z nk®kY nid n( ) oM Z nkH gy

2
_ 1 0 p%(O)E Ejat = Z hwk|bnk(0)| Pan=
EVVCﬁ(O)+ nk
= Pan H 2M H

o :% - 3 s man(0)a 0+

which obviously differs from equ. (20) and is therefore in- +—Z ZU” kY nkP n( )pn(O) =
correct. Analytical expressions fow and U (in real repre-

sentation) are given in Appendix B. From that we conclude _ W ZV a4 (0)a(0) + pa (0)
that the choice for 0) is consistent with the exciton-lat- rinHn n Z 2M
tice interaction but not with the lattice energy. The reason is, n

that the averaged equations which thé0b have to obey

M Vi ' . .
Z %Dnn Re{bnk(o)] _ / 20;( Ui n(o)gz 0 where Vis defined in Appendix B.

= In the case of bosons occupying the same state the ini-
tial variables are given by

Z %nn |m[bnk(0)] - 1{ ZM;wk Unkpn(o)gz 0 (23) Re{bnk(O)] = % Z @Un kOn (O)

> éﬁwdbnk(o W g1 (0)- (0] - 2('3 2% o 'mbn(0)]= % X ZM;wk UriicPn (0) (20)
n a n

simply do not contain enough information to determineHowever, here we have [28] alternatively
the b, (0) uniquely. Further the most obvious choice for a
solution, namely to set each term in the first two sums indi-
vidually to zero (from this equ. (21) follows) does not yield a
solution which could fuffill all three equations. =V Z ”k|a”| Re[b” k]
However, we can derive a consistent choice for the initlal
conditions, if we assume the ) as site independent p. :"Z /2thkunk|an| 'm[bnk]
(b, (0)=b(0)), i.e. if we choose the initial state to be offD '
form. From this initial state the site dependence of the b’s 5 2 2 2
present in the evolution governed by the completeFlat =V zh"’k|bnk| EhE Z|qﬂ| =
Hamiltonian evolves naturally from the [pequations of nk n
motion. If we set p(0)=h (0) in the above equations, we get
instead of a weighted average simply factajg =1, and
thus the initial values

(25)

(27)

Therefore it is obvious, that in order to obtain a correct
initial state we have to start from a jDike ansatz at t=0,
calculated from the initial set of displacements and momenta.

Moy Otherwise we would obtain an incorrect lattice energy and
Re[bnk(o)] = Z Ui (0) consequently an incorrect time evolution.
-\ 2n (24)
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The Decoupled Case
an-1

In the decoupled casg=0) we have the Hamiltonian ibnic = H bk~ ‘]gbr’rl k™ bnl) Dpn1 a, +
doe =J+ B O (32)
|:'DC J+ Hlat +(bn+1,k - bnk)Dn 1 a2+1 0
JE‘JZ(H:’%HJfH 1}%) n U
) n (28a) Thus we obtain
Hiat = zhwkbk by
k ih - * ok 2
_E (bnkbnk - bnkbnk) an=- z hwk| tP\k| gt
Since the two parts of the Hamiltonian are independent, K K
the exact solution is a product of a state for the excitons with J . 5 a,
a state for the phonons. The separation ansatz leads to +E z %n_l,kbnk —|bmJ %Dn ﬁlﬁ +
A K
Wi we) 3w = *
| > at| e> | e> +%)n+1kbnk_|bnk12%Dn Al P +
_ 0 _A (28b) ’ a,
|We)[in 5| W) —Hiat[W1) i
* 2 * aAn_
+%)n—1,kbnk_|bnkl %Dn Rl n*l +
which can only be fulfilled if both sides of the equation van- By
ish independently. Herg) [> is the exciton andp> the lat- . o a:, 1 O
tice (phonon) state. The phonon operator is a sum of opera- +%3n+1,kbnk‘|bnkl %Dn n1—:@n
tors for each normal mode and its solution is a product of an B
coherent states for each mode:
N (33)
3 [ (98-t (9
(W)= |_| Bx)=e 0)= and together with equ. (17) we have
k
1 2 n (29)
-5 bt B (t) .
e 2%' 0 eg \ |0> ihan = _J(Dn,n—lan—l + Dy r’rlaﬁl)"'
J * 2 —
+E z %n—l,kbnk _|bnl<l %Dn |=r1m +
Thus the exact solution of K n
2 0 -4 * 2 a,
in S| W) =Hia|W1) (30) BBk = ouil“ED 1 2:1 +
is given by our ansatz if +%3;—1,kbnk—|bnd2%D*n i, an*—l " (34)
bk (1) = b (0)e™* (31) %

0

* 28 @+l

+ by —1|b D —
where h(0) has to be constructed from the initial %J”H’k i~ D % h Al a Sﬂ

displacements and momenta as described in the previous

chapter. The exact solution of the Schrédinger equation for

the oscillator system is given in Appendix C. It is obvious o o .

that the exact solution is a }Dstate which is identical to a At the beginning of the first time step, i.e. at t=0 we can

ID> state with site independent(®). rgplace pK(O) by 'Q(O) from our initial state and the equa-
Thus we have to show, that from the equations of motiortions of motion yield

for the |D> ansatz the [t) remain site independent if we

start from a site independent initial state in the g Dnm(o): 1 - ina n(o): _J[aml(o)Jr awl(c)]

b (0) = 7o by (0) (35)
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Thus after the first time step ffFwe obtain all cases, in contrast tg, and the maximum of the function
. was put at site 0=11 in a chain of N=21 units. The
Dnm(r) =1 ; an(r) = an(0)+ J ar,rl(o)+ arﬂ( Q]T displacements and momenta of the lattice were chosen such
h that kinetic and potential energy each equal 0.5(N\TLjar
bk () = b (0)(1- iw 1) T=300K. This energy was distributed according to Bose-Ein-
(36) gtein statistics on the normal modes, excluding the transla-
tion:

Obviously the b’s remain site independent after the first
time step, thus consequently for all times, and therefore th@ln(O) = Z Unk 5
time simulation with the equations of motion for the>D K WZ (Un'k = Ups, k)
state yields the correct solution of }Dform, provided the n
initial state is of this form. Note, that for site-independent
b’s also the, for the decoupled case atrtificial coupling terms e
in equ.’s (32) and (34) vanish and that further we havep,(0)= ZUnk —kz
D, (H=L1. : MY Ui (39)

=

€k

The Complete Hamiltonian

e = (N-1) kg T e/ S
After we have shown, that in both special cases, the initial

state has to be of |[Bform, i.e. with site independent coher- [ hk D_l
ent state amplitudes k0), if a simulation using a |[Dansatz ~ f, =[@"" -1 ; S= Z hwy
should lead to the correct analytical solution, we have to ask B R

how such an initial state evolves in time when we apply the
complete Hamiltonian. Since in this case, the basis space of .
h P here M=114 m and k is Boltzmann's constant. For the

|D,> is incomplete we have to study the errors developin h order R K imulati Jat ¢

through the use of this ansatz. For this purpose we can u Qurth order unge- utt.a simu ations we used a time s'tep 0

the fact that [17] 1 fs and a total simulation time of 100 ps, corresponding to

100,000 time steps. In this period the error in total energy

. was typically less than 5-10 peV (much less than 0.1 % of

(ih% -H D)|D1> =J|5) (37)  the exciton phonon interaction energies) and the error in norm
around 1 ppb (parts per billion).

In Fig. 1 we show the norms
where the form of the error sta{d> as function of g

{a(t).b (1)} as computed in a |B simulation is known [17]. S, (t) = <( H/.J) Dl|( H J) Q> and S(t)=<5|5> for three val-

In our previous work [26] we have derived expressions forues ofx, namely 0, 10, and 20 pN. Note, that for these cou-

the expectation values of different operators for the two Stateﬁling strengths no solitons are present in the system. Here
|. We see, that for the decoupled case (Fig.1a) the norm of the
error state is below machine accuracy, since here we obtain

culations. Such a procedure can serve as the appropriate tqfk analytical solution from our simulations. The norm of
to answer our above mentioned question. Therefore we in

troduced cyclic boundary conditions into our program [26] (H/J)| D1> decreases slightly in the course of the simula-
and performed simulations fgr0,10,20,30,40 pN. F=0
we found that all the expectation values computed for th
state|d> from a numerical |P> simulation vanish, as it is to
be expected because in this casg [fdelds the exact solu-
tion for site independent amplitudeg(D).

To be more precise we applied as initial conditions for
the oscillator system

("]/J) D1> and [6> and compared them in numerical ca

tion. When we switch on the coupling to a small value of
&=10 pN (Fig.1b), the increase of(§ with time becomes
rather large, up to more than 35. However, the increase of
the error {(t) is much smaller, between 0 and 0.27, indicat-
ing the accuracy of the |B simulation. For the larger cou-
pling x=20 pN (Fig. 1c) 1) increases by a factor of 10 up
to values around 350. The increase of the error is much
smaller, namely up to a value of 1.5. If we increasarther

n— o)XZ 0 up to 30 and 40 pN.(not shpwn here), the mcreasg(dn)" S
a, (o) = R[gecLD 38 per 10 pN increase in coupling remains the same, while the
E (38) maximum values of §t) start to converge to maximum val-

ues around 2.2-2.3. When increasing the coupling further we
_ o reach the values already discussed in [26]. Thus it is obvi-
where R is a normalization constant, J=0.967 meV, W=13 Nbys, that the error in the norm starts to increase smoothly

m, X=62 pN (note, that X is used only in the initial state forwith x increasing from its value of 0 where $Ds the exact
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Figure 1: The norms g, ('c):<(I:|/J) D_L|(|A'VJ) Q> and In Fig. 3 finally we show the expectation values

& &

H _ ~ A
S.(t)=< &J5> for the two states under consideration as function Nn' = <(H/J) Dy ( H J) Q> and N (1)=<5|3+34 5> of

of time for three values of the coupling constant: ]
the number operators again for the three values of the cou-

(@) x=0 pN (S, relative to §(0)=675,827.93106) pling constant. ,
(b) X=10 pN (S relative to §(0)=676,851.60694) Naturally, for the decoupled case the error is less than
(c) X=20 pN (S, relative to §(0)=677,877.52615) machine accuracy, because in this case our evolution is ex-

act. Wth increasing coupling strength, we find a slight in-
crease of the errors, however, about six orders of magnitude

solution, when the simulation is started from an initigh|D smaller than the corresponding values &f(fil Thus also

like state. Fig. 2 shows the probabilitieth=<D, |34 [D,> here the deviation of our results from the exact solution of
to find an amide-l quantum at site n as function of time forthe Schrodinger equation is very small, even more or less

the three values of the coupling constant.The results shoff€9/igible, when using the |B ansatz starting from an ini-
that in all three cases no soliton is formed from the initialt@l |D,> like state. We do not discuss the expectation values

sech-distribution. The dispersion of this distribution become fglsplacerrr:ent 'an'? momer:\tum ofper:ators hsre, because they
less regular with increasing coupling strength, because tha€have rather similar as those of the number operators we

phonons, coupled with increasing strength to the oscillatord,2V€ just studied. Thus our conclusion drawn from the ana-

are initially excited with an energy corresponding to a tem_IytlcaIIy solvable special cases as discussed in the previous

perature of 300K, which leads to a large aperiodicity in thesubchapters remain valid aI§o when we apply the complete
lattice coordinates. Hamilton operator in numerical simulations.

Therefore, we can savely draw as final conclusion, that
indeed the initial state has to have the form of & [ate,
i.e. site independent coherent state amplitudg8)bin or-
der to be able to obtain reliable results fronr|Bimulations.
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Figure 3: The expectation values

At A r

& & ( H/J) Q> (a,c,e) as functions of
site and time for three values of the coupling constant:

(e,fix=20 pN

Figure 2: The probability N(t)=<D ,|a *a |D,> to find an
amide-1 vibrational quantum at site n as function of time for H R
three values of the coupling constant: Np = <(H/J)Dl
(@) x=0 pN  (b) x=10 pN (c)x=20 pN

(ab)x=0pN  (c,d)x=10 pN



82

-.50E-15

20

DN
ASEAWOR

N 'A&Q
Wi
SRURRAT oK
NS

e

A

«" N

Figure 3 (continued): The expectation values
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J. Mol. Model.1996,2
Expansions of Exact Solutions

Since in the following paper we want to use for the general
case expansions of the exact wave functions in polynomials
in time, it is very important to get a reliable tool to judge up
to which time a given order of the expansion can be consid-
ered as reliable. The best way to do so is the expansion of
exactly known solutions in such polynomials and to com-
pare the results of different orders with the exact states. There
are in principle two ways to compute such expansions. The
simplest one is to expand directly the exact solution. The
other one, which has to be used in cases where the exact
solution is not known, is to expand the formally exact wave
function

W) =e™w()  T=-1
TV

STORRRC) 0

Thus a given ordeu can be written as

(41)

In the present work we used both methods, just to avoid
errors in the calculation. Then expectation values for any
operator O can be computed from expectation values in lower
order by

[w()) =|w(u-1)+—w,) (42)

) (oot -2) + (w3
6|L|’H>

ML lu
2 H
(W)
In case of O being hermitian, the second term reduces to

R 0= 2)w, )5 (43)
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Further the expectation value can be expanded in any casebitrary order, it seems to be more advantegeous to use for

to yield this purpose the normal mode representation (Appendix C)
. Wl v . J=-Ja"Xa=-J¢ A e=- N A t¢ ; "= Rc
(wldota=3)= 3 5 ol w TR :
v=0 (48)
The properties of the different orders can further be used _
to transform expectations values of the Hamiltonian to over- 1 21 . 0
lap integrals: Rok = Te Noos A= ZEO%W kg

(WA ) = (W) = (Wlwye) (45)

With the transformations (herg(@)=9_ )
We do not want to elaborate here on more details of the

sometimes tedious calculations and proceed to the two cases ; \ « _ _
under consideration. c(0)= z Rua(0) © a()= Z R () (49)
n
The Oscillator System in the Decoupled Case we can write down the solution in any order in time by
expansion of the exact wave function as
Here the relevant expectation values to be computed are | ( )> ( ) . >
R W)= a,(p,t)a;|0) =

o )= (0(e)(e) M) = (oIS ane 2%

. 1 a9 100D e (50)
Nn(“’t):<w(ujan an|w(|“‘)> . These functions have to be N%e VZOW — H )

compared with the corresponding results obtained from the

exact solution, namely S(t)=1, H(t)=0 ang(iNas given in The expectation values of the number operators are con-
Appendix C for an initial state, where the excitation is |oca|'sequently

ized at one site o, i.«*al.l-'(o» =|wo)=345|0) . The Hamilto-

2
Nn(H, t) = 0 =
nian in spatial representation is given by n(IJ ) |an(IJ )|

211 V' +V'
5 at ah A _1 kK9 & ANe(-2¢) o
= _JZ (aﬁ g ¥ q+“1 q“) - F & © VVZ_O viv' Elgtg
n V=
4 5 . (46)
38;]0) = - Hra + ) O (51)

) ] . However, in the form Nu,t)=|a(u,t)f, where gu.t) is
Thus we can directly write down the first three orders Ofactually calculated from equ. (50), the expectation values

the exact solution are most easily programmed for arbitrary order. From (51)
we obtain
|L|J0>:é0|0> BV v+’
=3 -3 3 G
|w1> = _‘J(ég—l"' ég+1)| 0> 47 n kK vv=0 =~
(52)

[W2) = 32(85 + 28 + &) O
The expectation value of the Hamiltonian is obtained as

H(.0)= Y an (b ai (1, 1] 0 3 |o) =
Obviously in any ordep the excitation is at maximum n

. L. L . 27
transported only sites away from the initial excitation. Since J . =k(n-n) 53
we can also perform a direct expansion of the state to any N Z an (p,t)aﬂ (IJ, t)z AeN (3)
K

nn

|W3) = ‘33(53—3 +380 1 + 351 + Aafy?,)( 0
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Substitution of the explicit values for the coefficients
yields the final expression

S(1) ¢
3 s )V o, 0" 70 |
— )\ k —t o
N Z V,VZZO viv H fi H (54) 8.5 é
6.0 |
Note that all the double sums over the different orders in :
(52) and (54) are real, because each tegmo€curs twice. 5.5 ¢
The T  are anyway real. Therefore we always obtain combi- 5.0 |3
nations (T ,+T,, ) which can only be imaginary, if one of the T E
indices is odd and the other one even. However, just in this 45§
case due to the minus signs we haye=T . , and thus all :
imaginary contributions vanish, and the sum can be restricted 40 b
to terms whereu+v’) is even. Therefore we can write after ss
some reordering T F
u ( 1)\;‘ 3.0 F
_ J - D JtD V+V '+1 E
H(U,t) N VNZ:O NIV Eh% Z 2.5 (“
(v+vi)even 2.0 ' (3>
(55) 18§ ‘} (6)
i (/)
Since we have T 4)@ 5)2
0 .2 4 .6 .8

{ps)

Figure 4: The norm ) of the state vector in the decoupled

O
O o case for different orderg (u=1-7) of the wave function (in-
" H 0 ; ifnisodd dicated by numbers at the different curves) as function of
=N z Bﬂ%n’zm =0 time (the exact value is S(t)=1).
o O N

; ifnisevenor0

Note, that (8'+v)/2 is integer, becaus®'tv) is even.

(56)  Finally, from equ. (52) we obtain
and our summation is restricted to even values-of’f, we NI P
have in the k-summation only odd exponentsi(+1) atA,, - lim T PR R
and thus H{t)=0. This result can be used to check togethers() T S(“’ ) N Z (58)

with equation (53) the correctness of the program. Since in
S(u,t) we have in the k-summations only even exponents

(v+V') at the,, this quantitity does not vanish: We have calculated these expectation values for the case
Kk’ .

J=0.967 meV up to the"7order of the state vector, as de-
scribed above. In all these calculations, the total energy was

H (_1)(3V‘+V)/2(V+V-)! e

g
VVZO VI + VI){[\)+\)‘ /2] }2 EEH

(v+v' )even

(57)

in absolute value smaller than-%GV, i.e. it is vanishing
within machine accuracy. In Fig. 4 we show the nornpst}s(

We draw all computed orders in one plot. The time covered
was 1 ps. It is obvious, that starting from third order, the
norm is reasonably correct up to a time of roughly 0.6-0.8
ps, while in larger orders it is correct in the full interval of 1
ps. In Fig. 5 we show the time evolution of the expectation
values of the number operatorgtiNfor the exact state vec-
tor (Fig. 5a).



=B
o

S,l.SM
eaumsn
NNte.m a
ommummw
i
ammm
aw
t

>
o .
rewp
c @
o nWJC
n.m

b
.

) <

>

amh
mv,tm
tMafw
dmwmm
S.I
W.U
Os.m

S
=
—
&)
n
© 5
ea
SO.T.
) 5 O
(O]
>3

=
7.,m_luh
.@do
nﬂ(

°
>

) 1
() 3
()

Nno
mMme
vamo
Std
p.r||
e

me5

F et

mr

(]

c

.ncbe
S =
-
ua

-
5 £.5
£.85
S8 a
c S
-

C
mm
0]
&
£ 3
©
SOh
- -2

N
@
5) N
‘S
=
ll K
©
S ...Ha
me
M.me Qo0
mmm mmsh
S 2 mcrmm
weo
mm)mm
oahd
dWG
-
- 0

-

>
>



86 J. Mol. Model.1996,2

(9) 6th order (h) 7th order
Fefl) il —
n 10 > n 10 > >

Figure 5: The expectation values of the number operators
N (t) calculated from the exact state vector and the errors
F.(1,t)=IN_(t)-N (u,1)| for different odersy of the state vector

as function of site and time in the decoupled case:

(@) N(1) (b) =1 (c) u=2 (d) u=3 -
©u=4 (=5 (@u=6 () =7 (o) X \\\\\\\ﬁ\\\
N\ AR
N0 AT RN
\\\A‘

The Phonon System in the Small Polaron Limit 2 \\}“\ﬁ@\\\é\\\‘\\ ‘

S ;\..‘:\\?‘égm\\\\“\\\\\\\@\?\\v\ 4
The conclusion drawn in the last subchapter holds only for i §”, \N <
freely dispersing excitation in the oscillator subsystem. In 15 <
the complete system this time evolution is perturbed by th 10 t(PS)
interaction with the phonons. Thus we have to study alsc n 5 :

how well the lattice is described by such an expansion. Ti
this end we turn now to the small polaron limit with a local-
ized excitation at a site o (0=11 in our case of a chain with 2
units). Via the interaction of strengghthis localized excita-

this casedp> is given in equ. (A14) in Appendix A. The time

tion interacts with the initially unexcited lattice (9)=0). It (b) \‘\ ,u‘\\\ N

excites a shock wave in the lattice which travels roughly witr v 'é\\v‘)\@\\\i‘\\ &\

the speed of sound through the chain. The excitation itse \Mﬁm\\\\\\\\%ﬁ\\\(\\v}\\\\!&\\\\;\\,\‘\ .

remains at its initial site, because J=0. The exact solution fc p {0 ‘ A\’/x\&&\\ﬁ\\‘:\\v\\m \ifi\\\\g} \y‘z\\\i\\\%}wﬁ\
, 2 ‘\k{‘»\\\ﬁ\\\@%‘\v‘&; RO

WA\ AR
R AR AR

evolution of the displacements and momenta, as compute w,/ﬁ«‘\;t,\\\v,‘\\‘«,‘\\\«@:\\v \ NS
! W1 AN AN AR
from the exact state vector, for our case (W=13 N(r62 -2 \\;54 W xx\\wék’&\\fé\“\&\&%&b* \\§ \\ 3
. . . Vi ‘\\\'
pN and M=114 nj is shown in Fig. 6. 20 VI, , N -
Our Hamiltonian in this case is given in equ. (A1) in Ap- 15 < t(ps)
pendix A. The expansion of the wave function in a power noto ;
series in time is obtained both by direct Taylor expansion o 5

all the time dependent terms in the exact solution, equ. (A14

and ordering according to the powers of t, as well as by
succesive action of the Hamiltonian on the initial state, where
one has to commute the annihilation operators for phonons

occurring in the operator through the expression for the PréFigure 6: The time evolution of diplacementsth(in mA,

ceding order until they act on the vacuum and vanish. Thiﬁart a) and momenta fi) (in meVps/A, part b3 in the small

has to be done, until the final form of the state contains 0”'¥)0Iaron limit as compﬁted from the exact state vector62

phonon creation operators. The calculation is rather simpI%N (the plots of the time evolution for=35 pN are very

but lengthy. similar, only the absolute values of(ty and p(t) are of
roughly half the magnitude).
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Therefore we show here only the final results, which areplicit expressions to Appendix D and turn now to the nu-

identical in both procedures described: merical results.
As mentioned above we show in Figure 6 displacements
Hoqv ] it and momenta as computed from the exact solutiog$62
|w(“)> = Z 7| Yy) ; T= Iy pN. The corresponding plots fg=35 pN (not shown here),
v=l (59) are looking very similar, however, in that case the absolute

0> values are roughly half of that for the larger coupling. The
results show the usual shock wave in the lattice, caused by
the localized excitation at site o (0=11 in chains of 21 units).
From this the components of the state vector in the firstthe wave clearly disperses and becomes enhanced when its
three orderst are obtained as front passes the initial excitation for the second time after
roughly 2-3 ps. Figure 7, which shows the time evolution of
|L|J > _a |0> H(w,t) and of S,t) indicates clearly, that the third orderyvave
0 0 function is reasonably accurate on a time scale which is much
smaller than that for the corresponding third order function
) N N in the decoupled oscillator system discussed before. The rea-
|W1) =&{wo)=9585|0) ; Y= z hw  Boyby son for this is that the characteristic times of the oscillations
k in the lattice are much smaller than the characteristic time of
the oscillator system, as can be seen from Table 1.

|W2) =dlwy) =
=dy: )2 . Z (hwk)zB k(B o+ Atﬂ'()%ﬂo) (60)  Table 1: The characteristic times of the different lattice
° . oo H oscillations, T=1/w,, and for the amide-I oscillator

subsystem,T, =#/J, for the chain discussed in the main
text (the different coupling constants do not influence these

. )3 times).
wa)=afwz)= i) +
. k T, (ps) T(ps)
2 S \ant +
+S (hw, )’B k(B o bk)(3y +hwk)EFao 0
Z( ) Bou{Bo 0 E 9 1,20 0.406
2,19 0.205
3,18 0.139
The relevant expectation values in this case are the norm 4 17 0.107
of the state $(t)=<w(u,t)|P(u,t)>, the expectation value of 5,16 0.089 0.681
the Hamiltonian and those of the phonon operators 6,15 0.077
7,14 0.070
_ 8,13 0.065
S ) = (Wl ue. 9) 9,12 0.062
A 10,11 0.061
H( 1) = (W w () 21 0

B (b ) = (W(o, ) Bl (. ) (61)
For the case of the smaller coupling=85 pN, m=114
m ) the third order curve is close to the corresponding exact
On (. 1) = Z \/%Unk Re[Bk(Fl t)] oﬁ)e for a time of roughly 0.12-0.14 ps and upF:o 0.129ps for
k k the larger couplingy=62 pN). This is due to the fact that for
larger interaction the shock wave has a larger amplitude,
Pn (. t) = Z ZthkUnklm[Bk(lJa t)] which is excited on the same time scale. Thus with increas-
K

ing coupling it becomes more difficult to describe the exact
curves with a low order wave function. In Figure 8 we show

The calculation of these expectation values is again rathdf€ evolution of the displacements and momenta for sites o

tedious, so we refer the reader for some details and the e&'d 0+1. In our very small region of time only these two
sites are excited to a non-negligible extent. Already at sites
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J[(ps) 1.00 -:. e e et FrEptqd-rry
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H(meV S(t)
o (c) wf ()

MOV

0 .02 .04 .06 .08 .10 .12 .14 t(pS) "°°°. .02 .04 .08 .08 .10 .12 .14 J[(pS)

Figure 7: The functions H{t) (in meV) and (t) in the
small polaron limit (the graphs corresponding to the different
orders are marked by)

(a) H(,t), x=35 pN (b) SEt), x=35 pN

(c) H(u,t), x=62 pN (d) St), x=62 pN
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Figure 8 (continued on next page)The displacements (a) g(ut); x=35 pN
q,(ut) and q,,(u.t) together with the corresponding exact (c) p(t); x=35 pN
curves (in mA) and the momentypt) and p,,(u,t)
together with the corresponding exact curves (in meVps(g) p(ub); x=62 pN

A) in the small polaron limit (0=11, N=21):

0]
. ,(MA) (1)
(b)
4 \.
g \\\\exoct
—12:
(3)
2
16 (2)
t(ps) P P
O-
po+1 ; (d)
(meV ps/A)[
-
: oy
; “exact
,2;
[ (2)
_a
i (1)
t(ps) PP R AN
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Figure 8 (continued)
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0-1 and o+2 the excitations within 0.15 ps are negligible (dems studied. Thus S(t) and H(t) are indicators for the time
maximum of 0.1 mA for g,0f1.8 mA for g, of 0.05 meV  up to which an expansion yields reliable results. In any case,
ps/A for p_, and of 0.7 meV ps/A for  in case of the one has to conclude that expansions of the kind used here are
smaller coupling). Thus on our small time scale we deahot useful for the investigation of long time dynamics, since
mainly with a dimer. In Figure 8a to d the displacements andio this end very large orders would be required, which are
momenta for the small coupling case are shown. The reliprohibitively tedious to compute. Therefore one cannot get
ability of the third order curves in this case obviously corre-rid in this way of the requirement to use ansatz states for
sponds to that of the total energy and the norm as discussaedch purposes.

above.Thus also for displacements and momenta the third Further we found that, although theansatz state con-
order wave function is a reasonable approximation to the exatins site dependent coherent state amplitudes, the initial state
one up to 0.12-0.14 ps in the small coupling case and up teas to be constructed in form of a}Dvave function, i.e.
around 0.12 ps for the larger coupling (Figure 8e to h). Thavith site independent amplitudes, from the initial set of lat-
situation for the momenta is somewhat strange, because tte displacements and momenta. Otherwise in case of the
least for the small coupling the momenta in third order aredecoupled limit |[> dynamics would not lead to the exact
reasonably correct on a larger time scale than theolution. Further, the known requirements for computation
displacements, as can be seen in Fig. 9, and even thd correct amplitudes pfrom a given set of displacements
displacements are qualitatively tolerable up to more than 0.2nd momenta do not lead to a unique set &f &nd only the

ps, although the norm and total energy of the third order statese of site independenf'dyields consistent values of the
differ to a quite large extent from their correct values. How-lattice energy.

ever, this does not hold for larger coupling constants, like In conlusion, the present work lead to the foundations for
X=62 pN, because in this case the unphysical increase of tleethorough investigation of the very small time behaviour of
factors containing explicit powers of t starts to dominate ear{D,> dynamics (or generally for all ansatz states) in compari-
lier. This is due to the fact, that for increasing coupling shockson to the exact wave function, which is the subject of the
waves with increasing amplitudes are excited on the sam®@llowing paper.

time scale as for smaller couplings.
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Appendix A: Treatment of the Small Polaron Limit Using the |D> Ansatz

The Hamiltoniarﬂspin this case and the [Pansatz are given by

Hep= 0= Zhka (bk+b9A+nh+Zhka¢AQ

D1) = > an(1)an]0)[Bn) (A1)

|Bn) expé—% |bnk D]exp?t%k JE

First of all we have to show that our ansatz satisfies the Schrddinger equation for the Hamiltonian given in (Al). The left hanc
side of the equation is readily calculated and yields

ih%|D1> :ihz ET'Z %;nk(%b;k_ 6&)*’% t-)*nkbnl%ﬂ + %§Bn>%‘n+|0>e (AZ)
n k

To eliminate the time derivatives in (A2) we need the equations of motion for tharjBatz under the condition J=0. From
equ. (17) in the main text follows

Ih - * - 2
ihap, > > (bnkbnk_ bnkbnk) ant Z ooy EB]k( B+ t?1|<)+| bk E &h (A3)
iy = hw k(bnk+ Bnk) (A4)

Substitution of (A4) into (A3) yields

=1y 1o B brict Brudon 25)
K

The use of (A5) together with (A4) leads to the final form of (A2)

12101 = 3 Heo[Bubrict (bruct Bn)BiYBn) 3%
nk

e (A6)

With the help of the eigenvalue equation for coherent states

6k|Bn> = bnkl B n> (A7)

we obtain (A8) for the different terms on the right hand side of the Schrédinger equation and comparison with (A6) shows tha
the equation is fulfilled, and thus [btogether with the equations of motion (A4) and (A5) is the exact solution for the small
polaron limit:

0
@ Dy) = Z ghkamk bl + bk)amam zhwk o} Q%Bn> a"alo)
- 50
O>e - hﬁ' Q>
The explicit form of this solution is obtained by direct integration of (A4):

brk(1)
Cdbn
= —iwy [ dt’
-r bnk"'Bnk k-[). (A9)

(A8)

= zhwk[Bnkbk + Bpibpit bnkb4|Bn>
nk
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and thus
D (1) = bi(0)e™ + By €4 -1) (A10)

Further, together with (A10), we can integrate (A5)

a(t) 4 t
in I =1 zhkankJ'[bnk(t')+ bnk(t')]dt (A11)
an -
a,(0) 0
which yields the general solution for the transportless case

0= 3 ex 3 [ond9 B8040 i)

an(t):an(o)@xpgrig Bﬁk[sir(wkt)—wkt]gmexlg—iz B (0] s+ fon0 - ot )

MmO

b(t)= by (0)e7 4 + By €7 -1
where Re[x] (Im[x]) denotes the real (imaginary) part of a complex number x. For later considerations we need also the speci

case, that we start from an undistorted lattice and an excitation localized at one site ((0)=€. &nd g0)=3_:

. (t) ) e—i g Bok[sir(w d)-w kt]6

with the total state vector

-1’y B3 [sin(wit)-wd] Z[bok(t)ﬁt—ﬁok(t)BqA+
=e K [k &(0)

o 5 ()= Bn( gl —1) (A13)

|
; (AL4)
bok(t): Bok(e o _1)

For the computation of expectation values we concentrate first on the same case as Brown et al. [14], namely an undistort
lattice b, (0)=0, but an arbitrary excitation(). Then the lattice energy is given by

B = 3 e Da|BE B D) = 5 ]| b (15)
k nk

With the help of

Jan(t)” =|an(0)” = P+ |Bud( ) = 2B5{1- codw ] (AL6)
we obtain
Ejgt = 2% hw B2 Pn,{l— codw kt)] (A1)

which is identical to the exact result given by Brown et al. (Ref. [14], second paper). The exciton-lattice interaction energy is

Eint = %hwk Bnk< Dl‘(E)E + Bk)Aanar‘ Q> = Z% hooy EﬁkR% khk]| af :2% hwy B ﬁr{ cow y ) ]] =- (A18)
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Therefore, as to be expected, the total energy is conserved and vanishes in this case. The expectation values of the phol
operators are

Bk<D1|bk|D1> Z'an| nk_z PnnBL( Iwkt_l) ; $:< Q|A§| Q> (A19)

From this we obtain the displacements as

)= 3 [T UncR{2= 3 [Pt of oo )1 (n20)

where matrig contains the normal mode coefficients (see Appendix B for details). This is again identical to the exact quan-
tity given by Brown et al. Finally the momenta are given by

= Z 2Mhwy Upy Im[By] = —Z J2Miwy Pl B misin(@ )
k mk

(A21)

For the general case we have

Ejat = Zhwkank 01 +2le<[1_ cofw kt]+ 2B l[ [1— cofw kb] Y nk Sifw k)]ﬁﬂlﬁn
Eit = Z hwk{ZBnk[cos(w t)- ]]+ 2B k[xnk cofw )+ Y i Sifw @]} (A22)

where the abbreviations xRe[b, (0)] and y,=Im[b_(0)] were used. Finally the conserved total energytE +E_ is given
by

Etot = <D1|<1)| D1> = Zk hwkﬁbnk(oxz + Bm{ bnl(o) + b*nl(o)]ﬁm?m (A23)

Appendix B: Normal Mode Coefficients for the Lattice

The solution of the classical normal mode problem for a cyclic chain of oscillators leads to the problem of diagonalization of
a matrix V:

4=-V g0 U'g=-U'Vv U U oI +"q=—(£2 U q; ik =0kdw

W (B1)
Vom =1 {2 am= (18 o mas (18 18 =8 B md A 3
For this purpose we split the matrix in the form
v=1(2a-X)
(B2)

Xnm:(l_énN)é mﬁ1+(1_5 0)5 malt0 ® mNFd R m
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Instead of the eigenvalue problevu, = wﬁykwe solve the related probleiUy, = Ak U . The relation is, that both matrices
have the same eigenvectors and the relation of the eigenvalues is

VU :%(Zﬂzl—é)yk = 2%1_“(—%)\,(9,( :%(2—)\,()9,( 0 w? :%(2—“) (B3)

Since é is a reducible representation of the rotation groypv€ can write down its eigenvector matlli=J<Without further
calculation:

1 Wnk .
25(91 u ... LJN) v Un :ﬁe b DU =Unerk 5 Uk Upnek 5 Upn @ Uk

(B4)

Since in our cyclic system, the choice of the numbering is arbitrary, we assume n and k to run from 1 to N. The eigenvalues a
obtained by explicitely performing the matrix product

(2+ L(E)kk. = MOk (B5)

using the relation
1 N
Ok =y z eN (B6)

From this calculation the eigenvalueséfand \=/are found to be

e 0 . o _ WO [P 1]
)\k—ZEd:osaWkE ,wk—ZMé cogﬁk% (B7)

Using 1-cos(&)=2sirf(a) we obtain
W _ . O, Q0
= 21/— k
Wk M ES”H_N H (B8)

Obviously with exception of k=N each eigenvalue is doubly degenerate (we concentrate here and in the rest of the paper «
odd numbers N), namety,=w, ,, which is easily shown, using the trigonometric relatiorosiff=sin()cos()-cos)sin(B).
Therefore, any linear combination of the two eigenvectors belonging to the eigenyadmeso, , yields also eigenvectors of

V.. Thus from the set of degenerate eigenvectors, we can form a new set of real and orthonormal eigenvectors by

1 1

<|>(nk :_Z(Unk+UnN—k):\/%Et05§%nkﬁ

(B9)
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Since the new eigenvectors belong still to degenerate eigenvalues, we can form again another set of orthonormal eigenvect
by the linear combination:

, 1
ohid = S tkeoli (B10)
leading to
, _\/—DT[D (W_ |2 02 ]
coga) + sirfa) =2 coght =200 Wi =4 CO%WHK—ZH (Blla)
and

coqa) - sifa) = 200%1 HD lJJS,k) \/E CO%%”“E@ (B11b)

where k runs again from 1 to (N-1 )/2. To get rid of the unpleasent fact of having two functions for one k, we use in the secont
function (B11b) the index k'=N-k instead of k, but with k’ running from [(N-1)/2+1] to (N-1). After performing this substitu-
tion and using the relation cos(f)=coico-sinasinf with a=2mm we arrive at

( / _ e N-1
Whk = Cosa—nk —45 ©k=1,...—= 5
0 (B12)

iy = (cosa—nk‘ Z% kb%N—_l+1E,...(N—l)

Since co&{ an- (T;/ 4)] = i\/_&ve have now our final set of real eigenvalues and we substitute it for the eigenvectdgmatrix

Wy Z\/Wﬁ'l;mD k@
M

2 C L .
(cosa—nk—zg ; k=1,....N ; N odd (B13)

+

Z|4

IIC
IIC

1
c
c
=

This form of the normal mode coefficients can also be used to develop an ab inito Hartree-Fock Crystal Orbital formalism
based on real numbers only. However, in this case it does not lead to a complete block-diagonalization, because it leaves t
pairwise degenerate sets unresolved [33].

Appendix C: Analytical Solution of the Oscillator System in the Decoupled Case

The Hamiltonian for the oscillator system in the decoupie®) case reads as

9 - _ At 4 At A

J= JZ(% Gua + G aq) 1)
n

With the ansatz

0)

|We) = Z aq(t)an

n

€ (C2)
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the Schrddinger equation can be exactly solved and is transformed to
in .

Whereé is the same matrix as defined in Appendix B, equ. (B2). Therefore we have again the same eigenvec@amhtrix
eigenvalues\ :

1 —nk
Ak =2co k Ry =——eN : k=1,...N c4
SH— H N (C4)
However, here we keep its complex form and nanf8.iThen with the transformaticikf'g: cour equation becomes
i, . _
T FEFAC L Ak FA ik (C5)

which is simple to integrate:

t SN
At
ST

The backtransformation is simply done by multiplying the resultrfrom the left withR and replacing(0) by R* 80):

i2at H i tH DAt
a(t)=Rq)= RO~ R _{) 0¢€ g = & O )
0 He
or without matrix notation:
N N 2m E 2, 0
1 7k(n—rf) 2i l co: k
)=ty Sen Ve N (g o

0)%[0), (C9)

The expectation values f the number operators'a are given by

Nn(t)= |an ZZLZ Wm (k- K) -(k'”"‘k”) Z'J%O%kgcoégk'%
2

kk' n'n"

D (0) & (0) (C10)

For calculation of the norm of the state we have to syvir n. Then the first exponential can be summed over n and yields
together with the factor 1/N the Kronecker symbgl. When the sum over k' is performed the time dependent exponent
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vanishes. Then the summation over k can be performed, leading together with the second factr 1/Nmas the norm is
conserved and equals the norm of the initial state
The total energy is given by

Eot = JZ( aml t)+ a, 9%1 )——ZJZRE{ )ﬂ+l )]:—2 Z R%*@(O) @rl(c)] (C11)

where the last equality is obtained with the help of the same summation procedure as above, with the only difference the
instead of .. in this case a factcﬁn 1 IS ODbtained.

For Iater use we want to give finally the wave function coefficients for the special case of an initial excitation localized at
just one site o, i.e, @)=J

f2m D

at
Wk(n—o) HN K Hﬂq]|0>

(C12)

In this case the total energy vanishes apégiven by

2i£DoD2nkD coDZT[k
oL oK) | 2O CoBy
g Z (C13)
kK

Appendix D: The Relevant Expectation Values for the Phonon System in the Small Polaron Limit

First of all we compute the norm of the states in different ordef" brder we have simply S(0,t)=1, and #hdkder

S t):1+Z(Bbk°3kt)2

(D1)
Then in 29 order we obtain

2 t)=<L|J(l, t)+% Ty,

oo §e P -
2 3 4 D2
=51 t)—;—z Re{<¢o|¢2>]+;—3 |"{<UJ1|LIJ2>]+%;—4<LIJ2|LIJ2> :731??( Yo+

Z ok 03 kt (©2)

In this way we simplify all expectation values to the corresponding one of the preceding order and a series of expectatiol
values between thepJ>. Further we calculate S(3,t) to

1 g [ ,0 g s , 1 ]
3, t)=—= 982, )+— O +— D - , +_—

R 12%(%”’”) 3 ? Bl gy Bl Z B} gy Bl

(D3)

For calculation of the expectation values of the Hamiltonian we split the expression into two terms leading to

H(w,t)= Zhwk< ut)|bkbk|L|J >+2ZhkaokRe[Bk i

(D4)
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This leads to H(0,t)=0 and further to

H(l, t) = z hwk(Bokw kt)z
k
5
:Zz Okwkt) z 0|<-()J|<'t) +— Zh(x)kB k((JL) kt
k

HBt)=-= H(2 t)*- z hwy B (et 42 B okw kt
3

(6]

D
+z hwk(Bokwkt)ZEB5§§(Bokw kt)2g+3_z Bok wkt D+—Zh°~)k '%k(wk)
K ? K H 3% H

Further we give the expectation values of the phonon annihilation operators, yidee@

By (1, t) = —iBggw it

N -

o 0 1 U 3 1 201 U
By (2, t)— —iBgw ktgﬁ'z z (Bokw kt) E"‘ Bokwktz B%R(OJ kb —E Boi(()\) k§ Q-= z ( Bew D 0
k' k'

H 2% H

| 0 2 0
i > 14 2 O
B (3.t)= B (2 t)+§ Bok® Y (Boww i) > (Bokwi 1) E
;zk' 3

LB S B2 10+ B ()22 S (B 1)
60kk20kk60kkH2;OkkH

+Bokwkt§z Bok(w kt) E"E’fE z (Bok Wy t)zg*iz Bk (03|<'f)5%+i Bok(wkt)Bz Bok(w kt)
K H3 6¢ g 124 g 36 K
0 f

Finally note, that

B (1.0 = (. OB jw(u. )

holds.

101

(DS)

(D6)

(D7)
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Appendix E: Separation of the Phase Factor of the Exact Solution

We have found that the operatgisand | commute [see equ.(4)]. Further we know that the initial single exciton state must
be of the form

0(0) = 3 Bn(0Jan(925 9 -

n

where the operatoEABn (O) creates the initial set of displacements and momenta from the phonon v%um’én (O) can
contain only complex scalars and phonon operators. Then

5 - TV 2y t o __[Oito
eTD|cD(O)>:VZOWD Bn(0)a,(0an| 0 ; T=0-H (E2)
holds. Since
- O . 1 D+ O 1 O
>:?anmam+52hwkg |0>=E%+§Zhwkgﬁ|0> (E3)

0) (E4)

O 1 ka
Tlo)=e ¥ o() €
Finally we obtain
it ithokD
o) =" o) = 7 d¥f(g) = ¢"C FE 8a(o) &

which is the same separation as discussed in the main text.
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